30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Verhalten ganzrationaler Funktionen im Unendlichen 08:35 min

Textversion des Videos

Transkript Verhalten ganzrationaler Funktionen im Unendlichen

Hallo! Das Verhalten ganzrationaler Funktionen im Unendlichen ist unser Thema. Und da können wir uns als erstes Mal überlegen, was heißt denn das eigentlich. Also wenn ich jetzt ein Koordinatensystem bin, dann ist hier die y-Achse, hier ist der positive Teil der x-Achse, und hier ist der negative Teil der x-Achse. Die Frage ist jetzt, wenn man immer größere Zahlen in die Funktionen einsetzt, werden dann die Funktionswerte immer größer oder werden sie immer kleiner? Und auf der anderen Seite, wenn man immer kleinere Zahlen in die Funktionen einsetzt, werden dann die Funktionswerte immer größer oder immer kleiner? Wir können uns jetzt als erstes ansehen was der Fall ist, wie das geht, dann gucken wir uns an wie das graphisch, optisch aussieht und dann können wir uns noch überlegen, warum das alles so ist. Eine ganzrationale Funktion hat zum Beispiel einen solchen Funktionsterm. Das Verhalten im Unendlichen hängt nun nur von dem Summanden mit dem höchsten Exponenten ab, also hier dem Summanden 2x4. Dabei kommt es darauf an, ob der Exponent gerade oder ungerade ist, und es kommt darauf an, ob der Koeffizient, also die Zahl vor dem x mit dem höchsten Exponenten, positiv oder negativ ist. Sollte keine Zahl vor dem x mit dem höchsten Exponenten stehen, kannst du eine 1 dazu schreiben. Damit ist der Koeffizient positiv. Steht nur ein Minuszeichen vor dem x mit dem höchsten Exponenten, kannst du auch eine 1 dazuschreiben und der Koeffizient ist dann negativ. Wir haben vier Fälle zu unterscheiden, je nachdem ob der höchste Exponent gerade oder ungerade ist und ob der Koeffizient positiv oder negativ ist. Und das schauen wir uns jetzt mal kurz und knapp in einer Tabelle an. Ist der Koeffizient positiv und der Exponent gerade, geht f(x) gegen plus unendlich, falls x gegen plus unendlich geht, und f(x) geht ebenfalls gegen plus unendlich, falls x gegen minus unendlich geht. Ist der Koeffizient negativ und der Exponent gerade, geht f(x) gegen minus unendlich, falls x gegen plus unendlich geht, und f(x) geht ebenfalls gegen minus unendlich, falls x gegen minus unendlich geht. Ist der Koeffizient positiv und der Exponent ungerade, geht f(x) gegen plus unendlich, falls x gegen plus unendlich geht, und f(x) geht gegen minus unendlich, falls x gegen minus unendlich geht. Ist der Koeffizient negativ und der Exponent ungerade, geht f(x) gegen minus unendlich, falls x gegen plus unendlich geht, und f(x) geht gegen plus unendlich, falls x gegen minus unendlich geht. Damit haben wir das Verhalten im Unendlichen aller ganzrationalen Funktionen geklärt. Und zur besseren Orientierung können wir uns jetzt mal anschauen, wie die Graphen ganzrationaler Funktionen prinzipiell aussehen. Wenn der Koeffizient positiv ist und der Exponent gerade, haben wir folgende Situation. Wir haben hier irgendwelche Maxima und Minima, und für x gegen plus unendlich gehen die Funktionswerte gegen plus unendlich. Und auf der anderen Seite ist das genauso falls x gegen minus unendlich geht, gehen die Funktionswerte gegen plus unendlich. Ist der Koeffizient negativ und der Exponent gerade, gehen die Funktionswerte gegen minus unendlich, falls x gegen minus unendlich geht, und die Funktionswerte gehen ebenfalls gegen minus unendlich, falls x gegen plus unendlich geht. Und zwischendrin können sich irgendwelche Maxima und Minima befinden, vielleicht ist einfach auch nur ein großes Maximum da, und dann könnte die Funktion so aussehen. Das Maximum muss hier nicht in der Nähe der y-Achse sein, das kann auch da ganz weit draußen sein. Ich zeichne das nur so, weil ich ja irgendwie das Koordinatensystem hier andeuten muss. Falls der Koeffizient positiv ist und der Exponent ungerade, gehen die Funktionswerte gegen minus unendlich, falls x gegen minus unendlich geht, und die Funktionswerte gehen gegen plus unendlich, falls x gegen plus unendlich geht. Und zwischendrin ist da irgendein Ochsengedröhn in Form von Maxima und Minima. Und so könnte der Funktionsgraph aussehen. Ist der Koeffizient negativ und der Exponent ungerade, gehen die Funktionswerte gegen plus unendlich, falls x gegen minus unendlich geht, und sie gehen gegen minus unendlich, falls x gegen plus unendlich geht. Soweit also zur Sachlage. Wir haben aber noch nicht geklärt, warum das Verhalten im Unendlichen ganzrationaler Funktionen nur vom Summanden mit dem höchsten Exponenten abhängt. Aber das klären wir jetzt. Wir haben hier einen Funktionsterm x4 - 12x³ - 20x² - 5x - 10. Ich weise noch darauf hin, dass hier noch ein x0 stehen könnte, wird normalerweise weggelassen, deshalb lasse ich es hier auch weg. Falls x gegen plus unendlich geht, gehen diese Funktionswerte auch gegen plus unendlich. Das liegt nur an diesem x4 hier. Und das ist der Fall, trotzdem hier so einiges abgezogen wird. Aber wir werden sehen, dass der Summand mit dem höchsten Exponenten größer wird als der Betrag aller anderen Summanden zusammen. Wir können den Funktionsterm noch kleiner machen, indem wir jedem Summanden hier den betragsmäßig größten Koeffizienten spendieren. Warum nicht? Dann haben wir also x4 - 20x³ - 20x² - 20x - 20. Das was hier rauskommt ist sicher kleiner als das, was da rauskommt für große x. Wir können noch weitergehen, denn wir wissen ja, dass für große x, x³ größer ist als x² und größer als x und größer als x0. Wir spendieren noch mal jedem Summanden etwas und zwar die höchste Potenz, die nach dieser Potenz noch übrig bleibt, also x³. Dann haben wir hier noch - 20x³ - 20x³ - 20x³. Ist für große x sicher kleiner als das, was hier steht. Und jetzt schauen wir uns an, was hier eigentlich steht. x4 ist ja x * x³. Was wird alles in allem abgezogen? Wir haben -80x³. So und obwohl jetzt hier eine Menge abgezogen wird sehen wir, spätestens wenn x größer ist als 80 und das ist ja irgendwann erreicht, wenn x gegen plus unendlich geht, ist das Ganze hier positiv, wird dann für größer werdende x immer größer, geht gegen plus unendlich, und damit ist das hier auch der Fall, denn dieser Term ist ja für große x auf jeden Fall kleiner als der hier. So, damit sind wir fertig. Wir haben also gesehen, dass es beim Verhalten im Unendlichen ganzrationaler Funktionen vier Fälle gibt. Wir haben auch gesehen, dass diese vier Fälle nur vom Summanden mit dem höchsten Exponenten abhängen. Und wir haben ebenfalls gesehen, warum das so ist. Dann ist dem jetzt nichts mehr hinzuzufügen. Viel Spaß damit. Tschüss.