Terme mit unterschiedlichen Variablen zusammenfassen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Was ist ein Term?

Terme aufstellen und berechnen

Terme aufstellen – Anwendung

Termumformungen ohne Variablen

Termumformungen mit Variablen

Termumformungen (Übungsvideo)

Aus gegebenen Daten Terme aufstellen und berechnen

Terme vereinfachen

Terme mit unterschiedlichen Variablen zusammenfassen

Schlüsselwörter für Addition und Subtraktion

Terme aufstellen und berechnen (Übungsvideo)

Termumformungen mit mehreren Variablen
Terme mit unterschiedlichen Variablen zusammenfassen Übung
-
Gib an, wie man diesen Term mit unterschiedlichen Variablen zusammenfasst.
TippsBeispiel:
${2a+3b+7a+5b}$
${=2a+7a+3b+5b}$
${=(2+7)a+(3+5)b}$
${=9a+8b}$
Ein Koeffizient ist eine zu einem Rechenausdruck beigefügte Zahl. Zum Beispiel bei ${2a}$ ist ${2}$ der Koeffizient.
LösungTerme mit unterschiedlichen Variablen lassen sich zusammenfassen, wenn sie innerhalb des Terms gleiche Variablen haben, beispielsweise ${2a+b+3a+4b}$.
Achte darauf, ob die Rechnung aus Summanden oder Produkten besteht und welche Rechengesetze anzuwenden sind.
Für das Beispiel dieser Aufgabe ergibt sich folgende Zusammenfassung:
${2t+{\frac{1}{4}}z+3t+{\frac{1}{2}}z}$
Summanden neu ordnen (Kommutativgesetz):
${2t+3t+{\frac{1}{4}}z+{\frac{1}{2}}z}$
Koeffizienten ausklammern (Distributivgesetz):
${=(2+3)t+(\frac{1}{4}+\frac{1}{2})z}$
Klammern berechnen:
${=5t+(\frac{3}{4})z}$
-
Gib einen Term für die Tomaten und die Zwiebeln an.
TippsIm Salatrezept sind $2$ Tomaten und ${\frac{1}{4}}$ Zwiebel angegeben.
Im Suppenrezept sind $3$ Tomaten und ${\frac{1}{2}}$ Zwiebel aufgeführt.
LösungUm Terme korrekt aufzustellen, muss man die Koeffizienten und die Variablen bestimmen:
Im Salatrezept sind $2$ Tomaten und ${\frac{1}{4}}$ Zwiebel angegeben. Das wird zu ${2t}$ und ${\frac{1}{4}z}$ zusammengefasst.
Im Suppenrezept sind $3$ Tomaten und ${\frac{1}{2}}$ Zwiebel aufgeführt. Das wird zu ${3t}$ und ${\frac{1}{2}z}$ zusammengefasst.
Anschließend bildest du die Summe aus den vier Termen. Beachte, dass die Reihenfolge der Summanden beliebig ist:
${2t+\frac{1}{4}z+3t+\frac{1}{2}z=5t+\frac{3}{4}z}$
-
Entscheide, ob die Terme zusammengefasst werden können.
TippsVariablen können als Produkt zusammengefasst werden.
Beispiel:
${{z}\cdot{z}=z^2}$
Es gilt das Kommutativgesetz. Zum Beispiel kann ${2xy+3yx}$ zu $5xy$ zusammengefasst werden.
Nicht zusammengefasst werden kann ${2xy+3yz}$.
LösungTerme mit unterschiedlichen Variablen lassen sich zusammenfassen, wenn sie innerhalb des Terms gleiche Variablen haben. Wenn Variablen als Produkt auftreten, darfst du sie nur in genau dieser Kombination zusammenfassen.
Folgende Terme können wir zusammenfassen:
${3ab+4ab=(3+4)\cdot ab = 7ab} \rightarrow$ Distributivgesetz
${3bc+4cb = 3bc + 4bc = (3+4) \cdot bc=7bc} \rightarrow$ Kommutativgesetz und Distributivgestz
${{x}\cdot{x}=x^2} \rightarrow$ Produkt wird als Potenz geschrieben
${{a}\cdot{a}\cdot{a}=a^3} \rightarrow$ Produkt wird als Potenz geschrieben
Folgende Terme können wir nicht zusammen:
${3ab+4ac}$
${1,5xy+1,5xz}$
${3ba+3bc}$
-
Ermittle, welche Terme gleich sind.
TippsBeachte, dass zum Beispiel ${x\cdot{y}=y\cdot{x}}$ ist. Ordne dann die Summanden so neu an, dass alle gleichen Variablen zusammenstehen (Kommutativgesetz).
Beispiel:
${3xy+4xy+5yz+6yz}$
Fasse anschließend die Koeffizienten in einer Klammer zusammen (Distributivgesetz).
Beispiel:
${(3+4)xy+(5+6)yz}$
Berechnest du die Klammern, erhältst du das Endergebnis des Terms.
Beispiel:
${7xy+11yz}$
LösungWenn Variablen als Produkt auftreten, dann darfst du sie auch nur in dieser Kombination zusammenfassen, zum Beispiel ${2de+3ed=5ed}$.
Außerdem kann man mit dem Kommutativgesetz nicht nur Summanden, sondern auch Faktoren vertauschen. Es gilt daher:
${x+y=y+x}$ und ${x\cdot{y}=y\cdot{x}}$
Du kannst also alle Aufgaben nach folgendem Muster lösen:
$1. ~\color{orange}{\text{Summanden neu ordnen mit dem KG}}$
$2. ~ \color{blue}{\text{Koeffizienten zusammenfassen mit dem DG}}$
$3. ~ \color{magenta}{\text{Klammern ausrechnen}}$
Diese Terme gehören jeweils als Paar zusammen:
$2ab+\frac{1}{2}cd+4ba+\frac{1}{3}dc=\color{orange}{2ab+4ab+\frac{1}{2}cd+\frac{1}{3}cd}\color{black}=\color{blue}{(2+4)ab+(\frac{1}{2}+\frac{1}{3})cd}\color{black}=\color{magenta}{6ab+\frac{5}{6}cd}$
$2a\cdot3b\cdot\frac{1}{2}c=\color{blue}{(2\cdot3\cdot\frac{1}{2})abc}\color{black}=\color{magenta}{3abc}$
$2a+4bc+2b+4a=\color{orange}{2a+4a+4bc+2b}\color{back}=\color{blue}{(2+4)a+4bc+2b}\color{black}=\color{magenta}{6a+4bc+2b}$
$\frac{1}{2}b\cdot4a\cdot3c=\color{blue}{(\frac{1}{2}\cdot4\cdot3)abc}\color{black}=\color{magenta}{6abc}$
-
Fasse den Term zusammen.
TippsOrdne zuerst die Terme mithilfe des Kommutativgesetzes.
Fasse die Koeffizienten zusammen mithilfe des Distributivgesetzes.
Lösung$6x+9y+13x+5y+4x$
Um diese Aufgabe zu lösen, musst du zunächst die Terme mithilfe des Kommutativgesetzes neu ordnen, sodass alle $x$ und $y$ zusammenstehen. Die Reihenfolge innerhalb der $x$-Terme und $y$-Terme ist dabei egal.
Summanden neu ordnen:
$+6x+4x+13x+9y+5y$
Anschließend fasst du die Koeffizienten mithilfe des Distributivgesetzes zusammen.
Koeffizienten ausklammern:
$(6+4+13) \cdot x+(9+5)\cdot y$
Dann rechnest du die Klammern aus und erhältst einen zusammengefassten Term.
Klammern berechnen:
$23\cdot x+14\cdot y$
-
Ermittle einen vollständig zusammengefassten Term für Tomaten und Zwiebeln.
TippsTomaten: $3t$ und $4,\!5t$
Zwiebeln: $0,\!75z$ und $1,\!5z$
Du kannst zunächst den Term als Summe schreiben, die Summanden dann mithilfe des Kommutativgesetzes vertauschen und anschließend mit dem Distributivgesetz zusammenfassen.
LösungDu liest aus der Aufgabe heraus, dass man im ersten Rezept $3$ Tomaten und $0,\!75$ Zwiebeln und im zweiten Rezept $4$ Tomaten und $1,\!5$ Zwiebeln benötigt.
Das sind für die Tomaten $3t$ und $4,\!5t$ sowie für die Zwiebeln $0,\!75z$ und $1,\!5z$.
In der Aufgabe sind die Variablen $t$ und $z$ vorgegeben. Der Term wird somit wie folgt aufgestellt, wobei die Reihenfolge der einzelnen Summanden beliebig ist:
${4,\!5t+0,\!75z+3t+1,\!5z}$
Zuerst ordnest du die Terme mithilfe des Kommutativgesetzes neu an, sodass alle gleichen Variablen zusammenstehen:
$={4,\!5t+3t+0,\!75z+1,\!5z}$
Anschließend fasst du die Koeffizienten zusammen, indem du die Variablen mithilfe des Distributivgesetzes ausklammerst:
$= {(4,\!5+3)t+(0,\!75+1,\!5)z}$
Dann rechnest du die Klammern aus:
$={7,\!5t+2,\!25z}$
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt