Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Quotientenregel – Herleitung

Bereit für eine echte Prüfung?

Das Quotientenregel Quiz besiegt 60% der Teilnehmer! Kannst du es schaffen?

Quiz starten
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.5 / 4 Bewertungen
Die Autor*innen
Avatar
Fritze Michael
Quotientenregel – Herleitung
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Quotientenregel – Herleitung

Hallo und herzlich willkommen. In diesem Video wird dir eine Herleitung der Quotientenregel vorgestellt. Dabei werde ich dir erst einmal verdeutlichen, warum die Quotientenregel nützlich ist. Danach werden wir gemeinsam die Quotientenregel mit Hilfe der Produktregel und der Kettenregel herleiten. Um das Gelernte direkt anzuwenden, wird die Quotientenregel auf ein Beispiel angewandt. Zum Schluss fasse ich noch einmal das Wichtigste aus diesem Video für dich zusammen. Viel Spaß!

Transkript Quotientenregel – Herleitung

Hallo, mein Name ist Michael. Ich möchte in diesem Video mit dir zusammen die Quotientenregel herleiten. Für die Herleitung solltest du bereits Ableitungen mit der Produkt- und Kettenregel bilden können. Anfangs werde ich dir zeigen, warum wir die Quotientenregel eigentlich brauchen. Im zweiten Abschnitt werden wir uns noch einmal erinnern, wie genau die Produktregel lautet um dann im dritten Abschnitt die Herleitung der Quotientenregel aus der Produktregel nachvollziehen. Dann werde ich mit dir an einem Beispiel die Quotientenregel anwenden. Nach dem Beispiel werden wir die Quotientenregel allgemein aufstellen. Am Ende fasse ich das Gelernte einmal zusammen. Warum brauchen wir die Quotientenregel? Als Beispiel betrachten wie den Quotienten aus den Funktionen 2x² und 3x-1. Bevor wir f’, also die Ableitung der Funktion angeben können, betrachten wir die Funktion als ein Produkt aus 2x² und 1 durch 3x-1 . Nun könnten wir die Ableitung f'(x) mit Hilfe der Produktregel bestimmen, was aber aufgrund des Faktors 1/3x-1 nicht einfach ist. Deswegen zeige ich dir in den nächsten Minuten, wie du solche Funktionen mit der Quotientenregel ableiten kannst. Im Allgemeinen kann man unser Beispiel auch als Quotienten von 2 beliebigen Funktionen u(x) und v(x) beschreiben, welcher in der Regel als Bruch dargestellt wird. Nun kommen wir zu zweitens: Erinnerung an die Produktregel. Um die Quotientenregel nun herzuleiten betrachten wir diese Funktion wieder als Produkt, nämlich aus u(x) und 1/v(x). Nun versuchen wir die Produktregel auf unsere Funktion anzuwenden. Zuvor noch einmal zur Erinnerung: die Produktregel für eine Funktion der Form g(x)= Groß U(x)*Groß V(x) lautet folgendermaßen: g’(x) ist gleich der Ableitung von groß U(x), also groß U’(x) mal groß V(x) plus groß U(x) mal der Ableitung von groß V(x), also groß V’(x).

Groß U(x) und Groß V(x) entsprechen also unseren Faktoren: Es gilt: groß U(x)= klein u(x) und groß V(x)= 1/ klein v(x). Leiten wir unsere Funktion nun mit Hilfe der Produktregel ab, erhalten wir folgenden Ausdruck: die Ableiteung von u(x), also u’(x) mal 1/v(x) addiert mit u(x) mal der Ableitung unseres zweiten Faktors, also (1/v(x))’. Kommen wir zur Herleitung der Quotientenregel. Um diesen Ausdruck zu vereinfachen, betrachten wir den Term (1/v(x))’ erst einmal separat. Zuerst wenden wir ein Potenzgesetz an, welches uns erlaubt den Term mit v(x) hoch minus 1 zu schreiben. Nun leiten wir diesen Term mit Hilfe der Kettenregel ab. Zuerst wird die Potenz minus eins vor das v geschrieben, dann wird die Potenz um 1 verkleinert, wir erhalten also v(x) hoch minus 2. Zuletzt müssen wir das Ganze nun noch mit der inneren Ableitung, also v’(x) multiplizieren. Wir erhalten den Ausruck -1v(x)^-2v'(x) Setzen wir den gerade berechneten Term nun in unsere obere Gleichung ein, dann erhalten wir für die Ableitung f'(x) = u'(x)(1/v(x))+ u(x) (-1)v(x)^-2v'(x). Die -1 macht aus dem Plus ein Minus und aus dem v(x)-2 wird wieder ein Bruch. Nun erweitern wir den linken Summanden mit v(x) um auf beiden Seiten der Gleichung den gleichen Nenner zu erhalten. Wir erhalten wieder einen Term in der Bruchschreibweise: f'(x)= ((u'(x)v(x))/ v(x)2) - (u(x)v'(x))/ v(x)2 Nach der Subtraktion von Brüchen sieht unsere Gleichung für die Quotientenregel folgerndermaßen aus:

f'(x)= (u'(x)v(x)-u(x)v'(x))/ v(x)² Wenn wir die Variable x der Einfachheit halber weglassen ergibt sich folgende Merkregel: f'(x) bzw (u/v)'= (u'v-uv')/ v²

Versuchen wir gleich die Quotientenregel an unserem Beispiel anzuwenden: Links unser Beispiel und rechts daneben die allgemeine Form. Das u(x) entspricht 2x² und das v(x) 3x-1. Nun wenden wir Schritt für Schritt die Quotientenregel an: Also statt u’ schreiben wir (2x²)’ und statt v´schreiben wir (3x-1)´. Die Ableitung von ( 2x²)’ und (3x-1)’ sind bekannt: (2x²)’= 4x und (3x-1)’ ist gleich 3. Setzen wir das nun ein, erhalten wir als Ergebnis: f'(x)= (4x(3x-1) - 2x² 3)/ (3x-1)² , Vereinfacht erhalten wir dann (6x²-4x)/ (3x-1)² Es muss noch erwähnt werden, dass die Funktion f(x) und die Ableitung f´(x) an der Stelle x=⅓ nicht definiert ist, da der Nenner nicht 0 werden darf. Die Funktion hat an der Stelle eine Definitionslücke und kann dort nicht mit der Quotientenregel abgeleitet werden. Ganz allgemein gilt also immer die Bedingung, dass u und v differenzierbare Funktionen sein müssen und an der Stelle x0 muss v(x0) ungleich 0 sein. Genau dann gilt, dass f(x) =u(x)/ v(x) die folgende Ableitung hat.

Also als kurze Merkfomel: f'=(u´v-uv´)/v2

Damit wäre es für heute auch geschafft. Die Quotientenregel kann man also mit Hilfe der Produktregel und der Kettenregel herleiten. Sie lautet in der Kurform: (u/v)´=(u´v-uv´)/ v². Statt dem Beispiel, welches ich dir vorgerechnet habe, kannst du dir eigene Beispiele ausdenken oder auch in deinem Mathebuch nachschauen. Viel Erfolg beim Ableiten.

Quotientenregel – Herleitung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Quotientenregel – Herleitung kannst du es wiederholen und üben.
  • Gib die Quotientenregel an.

    Tipps

    Die Quotientenregel kann mit der Produktregel und der Kettenregel hergeleitet werden.

    Die Produktregel lautet in der Kurzschreibweise:

    $(u\cdot v)'=u'\cdot v+u\cdot v'$.

    Die Kettenregel lautet:

    $(f(g(x)))'=f'(g(x))\cdot g'(x)$.

    Es gilt:

    $\left(\frac1x\right)'=-\frac2{(v(x))^2}$.

    Lösung

    Die Regel, um einen Quotienten aus zwei Funktionen

    $f(x)=\frac{u(x)}{v(x)}$

    abzuleiten, lautet:

    $f'(x_0)=\frac{u'(x_0)\cdot v(x_0)-u(x_0)\cdot v'(x_0)}{(v(x_0))^2}$,

    dabei

    • müssen $u$ und $v$ differenzierbare Funktionen und
    • $u(x_0)\neq$ sein.
    Die Kurzschreibweise lautet:

    $\left(\frac uv\right)'=\frac{u'\cdot v-u\cdot v'}{v^2}$.

  • Bestimme die erste Ableitung der Funktion $f$.

    Tipps

    Verwende die Quotientenregel:

    $\large{\left(\frac uv\right)'=\frac{u\cdot v-u\cdot v'}{u^2}}$.

    Vereinfache den Term so weit als möglich.

    Lösung

    Die Funktion

    $f(x)=\frac{2x^2}{3x-1}$, $\mathbb{D}_f=\mathbb{R}\setminus\left\{\frac13\right\}$,

    soll abgeleitet werden. Hierfür kann die Quotientenregel, in Kurzschreibweise:

    $\large{\left(\frac uv\right)'=\frac{u\cdot v-u\cdot v'}{u^2}}$

    verwendet werden. Es ist:

    • $u=2x^2$ und damit $u'=4x$ sowie
    • $v=3x-1$ und damit $v'=3$.
    Dies kann in die Quotientenregel eingesetzt werden und liefert:

    $\begin{align*} f'(x)&=\frac{4x\cdot(3x-1)-2x^2\cdot 3}{(3x-1)^2}\\ &=\frac{12x^2-4x-6x^2}{(3x-1)^2}\\ &=\frac{6x^2-4x}{(3x-1)^2}. \end{align*}$

  • Leite die Funktion einmal ab.

    Tipps

    Du kannst dir die Quotientenregel auch in Worten merken: „... Ableitung der Zählers mal den Nenner minus Zähler mal Ableitung des Nenners durch Nenner im Quadrat.“

    Achte darauf, dass ein Minuszeichen vor einer Klammer in der Klammer jedes Vorzeichen vertauscht.

    Du kannst den Nenner in der Form $(u(x))^2$ stehen lassen und musst diesen nicht ausmultiplizieren.

    Lösung

    Um die Quotientenregel anzuwenden, wird die Ableitung sowohl des Zählers als auch des Nenners der Funktion

    $f(x)=\frac{3x^2+2}{x^2+1}$, $\mathbb{D}_f=\mathbb{R}$

    benötigt. Diese sind

    • $(3x^2+2)'=6x$ sowie
    • $(x^2+1)'=2x$.
    Somit ist

    $\begin{align*} f'(x)&=\frac{6x\cdot (x^2+1)-(3x^2+2)\cdot 2x}{(x^2+1)^2}\\ &=\frac{12x^2+6x-6x^2-4x}{(x^2+1)^2}\\ &=\frac{6x^2+2x}{(x^2+1)^2}. \end{align*}$

  • Entscheide, ob die Ableitung richtig ist oder falsch.

    Tipps

    Verwende die Quotientenregel:

    $\left(\frac{u(x)}{v(x)}\right)'=\frac{u'(x)\cdot v(x)-u(x)\cdot v'(x)}{(v(x))^2}$.

    Vereinfache den jeweiligen Term so weit als möglich.

    Es gilt:

    $\left((x+1)^2\right)'=2(x+1)$.

    Zwei der vier Ableitungen sind richtig.

    Lösung

    Bei jeder der Funktionen wird die Quotientenregel angewendet:

    $\left(\frac{u(x)}{v(x)}\right)'=\frac{u'(x)\cdot v(x)-u(x)\cdot v'(x)}{(v(x))^2}$.

    Betrachten wir zunächst die Ableitung der Funktion

    $f(x)=\frac{2x-1}{x^2}$, $\mathbb{D}_f=\mathbb{R}\setminus\{0\}$:

    $\begin{align*} f'(x)&=\frac{2x^2-(2x-1)\cdot 2x}{x^4}\\ &=\frac{-2x^2+2x}{x^4}\\ &=\frac{-2x+2}{x^3}. \end{align*}$

    Nun die Ableitung der zweiten Funktion:

    $f(x)=\frac{2x-1}{x}$, $\mathbb{D}_f=\mathbb{R}\setminus\{0\}$:

    $\begin{align*} f'(x)&=\frac{2x-(2x-1)\cdot 1}{x^2}\\ &=\frac{1}{x^2}. \end{align*}$

    Es folgt die Ableitung von

    $f(x)=\frac{2x-1}{x^2+2}$, $\mathbb{D}_f=\mathbb{R}$:

    $\begin{align*} f'(x)&=\frac{2(x^2+2)-(2x-1)\cdot 2x}{(x^2+2)^2}\\ &=\frac{-2x^2+2x+4}{(x^2+2)^2}. \end{align*}$

    Bei der Funktion

    $f(x)=\frac{2x}{(x+1)^2}$, $\mathbb{D}_f=\mathbb{R}\setminus\{-1\}$:

    $\begin{align*} f'(x)&=\frac{2(x+1)^2-2x\cdot2\cdot(x+1)}{(x+1)^4}\\ &=\frac{2(x+1)-4x}{(x+1)^3}\\ &=\frac{-2x+2}{(x+1)^3}. \end{align*}$

    müssen wir zusätzlich die Kettenregel $\left((x+1)^2\right)'=2(x+1)$ verwenden sowie mit dem Faktor $x+1$ kürzen.

  • Ergänze die Produktregel.

    Tipps

    Ein Spezialfall der Produktregel ist die Faktorregel:

    $(r\cdot f(x))'=r\cdot f'(x)$.

    Die Reihenfolge bei der Produktregel ist, anders als bei der Quotientenregel, nicht von Bedeutung.

    Es ist egal, ob du $u\cdot v$ oder $v\cdot u$ ableitest.

    Lösung

    Die Regel, um ein Produkt aus zwei Funktionen

    $f(x)=u(x)\cdot v(x)$

    abzuleiten, lautet:

    $f'(x)=u'(x)\cdot v(x)+u(x)\cdot v'(x)$.

    Die Kurzschreibweise lautet:

    $(u\cdot v)'=u'\cdot v+u\cdot v'$.

  • Gib eine Formel an, um Funktionen der Form $f(x)=\frac1{(ax+b)^n}$ abzuleiten.

    Tipps

    Du kannst entweder die Funktion mit negativem Exponenten schreiben und die Kettenregel anwenden oder die Quotientenregel und die Kettenregel anwenden.

    Die Ableitung einer Konstanten ist $0$.

    Potenzen werden potenziert, indem die Basis mit dem Produkt der Exponenten potenziert wird.

    Lösung

    Bei der Funktion

    $f(x)=\frac1{(ax+b)^n}$, $\mathbb{D}_f=\mathbb{R}\setminus\left\{-\frac ba\right\}$

    ist

    • der Zähler $1$ und somit dessen Ableitung $0$ sowie
    • der Nenner $(ax+b)^n$ und dessen Ableitung $n\cdot (ax+b)^{n-1}\cdot a$ nach der Kettenregel.
    Die Ableitung lautet also

    $f'(x)=\frac{0\cdot (ax+b)^n-1\cdot n\cdot (ax+b)^{n-1}\cdot a}{\left((ax+b)^n\right)^2}$.

    Nun können zum einen Potenzregeln angewendet sowie gekürzt werden zu:

    $f'(x)=\frac{- n\cdot (ax+b)^{n-1}\cdot a}{(ax+b)^{2n}}=-\frac{a\cdot n}{(ax+b)^{n+1}}$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

7.517

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.910

Lernvideos

37.007

Übungen

34.245

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden