Kongruenz
Erfahre, was es bedeutet, wenn zwei Figuren kongruent sind und welche Kriterien erfüllt sein müssen. Egal, ob gedreht, verschoben oder gespiegelt wird, diese Kongruenzabbildungen sorgen für identische Formen. Interessiert? Das und mehr findest du im folgenden Text!
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Kongruenz Übung
-
Zeige kongruente Figuren.
TippsKongruente Figuren haben dieselben Längen und Winkel.
Figuren mit verschiedener Zahl von Ecken sind nicht kongruent.
Zwei Figuren sind genau dann kongruent, wenn du sie zur Deckung bringen kannst.
LösungDie Kongruenz von Figuren bedeutet ihre Deckungsgleichheit. Du darfst zwei Figuren in der Ebene verschieben, drehen und spiegeln, um sie vollständig zur Deckung zu bringen. Das gelingt aber nur, wenn die Figuren wirklich kongruent sind. Du kannst die Nicht-Kongruenz z.B. an der Zahl der Ecken oder der Größe der Winkel erkennen: Haben zwei Vielecke nicht dieselbe Anzahl an Ecken, so sind sie nicht kongruent. Haben sie verschiedene Winkel, so sind sie ebenfalls nicht kongruent. Dieses Kriterium ist aber nur für Nicht-Kongruenz hinreichend. Denn zwei Dreiecke mit denselben Winkeln müssen nicht kongruent sein. Sie sind ähnlich, haben also dieselbe Form, aber nicht notwendig auch dieselbe Größe. Bei komplizierteren Vielecken musst du nicht nur die Anzahl der Ecken, die Längen und die Winkel beachten, sondern auch die Anordnung der Seiten in der jeweiligen Figur.
Im Bild siehst du zwei Dreiecke, zwei Vierecke und drei Sechsecke. Die beiden Vierecke sind nicht kongruent, denn sie haben verschiedene Winkel. Die beiden Dreiecke sind nicht kongruent, denn sie haben verschiedene Größen. Sie sind aber ähnlich zueinander, denn sie haben dieselben Winkel. Von den drei Sechsecken sind zwei zueinander ähnlich, nämlich die beiden mit $1$ und $2$ bezeichneten. Das dritte Sechseck hat eine andere Form. Die Längen und Winkel sind dieselben wie bei den anderen Sechsecken, aber die Anordnung der Seiten und Winkel ist verschieden.
-
Vervollständige die Sätze.
TippsKongruenz von Figuren bedeutet, dass sie deckungsleich sind.
Zwei Figuren sind ähnlich, wenn sie dieselbe Form, aber nicht unbedingt dieselbe Größe haben.
Kongruente Dreiecke haben dieselben Seitenlängen und Winkelgrößen, ähnliche Dreiecke haben dieselben Winkelgrößen.
LösungDie Kongruenz bzw. Nicht-Kongruenz von Figuren kannst du an verschiedenen Merkmalen ablesen: Bei Dreiecken genügt für die Kongruenz die Gleichheit der drei Seiten. Aus der Gleichheit der Winkel kann man nicht auf die Kongruenz schließen. Sind aber nicht alle Winkel gleich, so sind die Dreiecke nicht kongruent.
Bei komplizierteren Vielecken musst du neben den Längen und Winkeln auch noch die genaue Anordnung der Längen und Winkel beachten, um auf die Kongruenz bzw. Nicht-Kongruenz der Figuren zu schließen.
So findest du folgende richtige Sätze:
- Zwei Dreiecke mit denselben Winkeln ... sind zueinander ähnlich, aber nicht unbedingt kongruent.
- Zwei Dreiecke mit denselben Seitenlängen ... sind zueinander kongruent.
- Zwei Vierecke mit denselben Seitenlängen ... sind nicht unbedingt zueinander ähnlich.
- Ein Viereck und ein Fünfeck ... sind niemals zueinander kongruent.
-
Erschließe die kongruenten Figuren.
TippsKongruente Vielecke haben dieselbe Anzahl an Ecken.
Eine symmetrische Figur ist nicht zu einer asymmetrischen Figur kongruent.
Diese beiden Sechsecke sind kongruent, denn sie werden durch die Spiegelung an der Achse zur Deckung gebracht.
LösungKongruenz von Vielecken bedeutet ihre Deckungsgleichheit unter einer geeigneten Verschiebung, Drehung oder Spiegelung oder einer Kombination aus solchen. Bei einer Kongruenz bleibt die Größe und die Form (bis auf Drehungen und Spiegelungen) erhalten. Insbesondere haben kongruente Vielecke dieselbe Anzahl an Ecken und Kanten und dieselben Kantenlängen und Winkelgrößen. Ihre Orientierung sowie ihre Position und Lage in der Ebene sind aber im Allgemeinen verschieden.
In der Aufgabe siehst du vier Zentralelemente und jeweils drei dazu kongruente Figuren. Eines der Siebenecke ist achsensymmetrisch, das andere, sowie die beiden Sechsecke sind asymmetrisch. Das asymmetrische Siebeneck hat einen sehr spitzen Winkel, an dem du alle dazu kongruenten Siebenecke gut erkennen kannst.
Bei den Sechsecken sind die Winkel der „Pfeilspitzen“ kaum zu unterscheiden. Aber am hinteren Ende der „Pfeile“ kannst du diese Sechsecke durch die Verschiedenheit ihrer Winkel gut unterscheiden. Entscheidend ist hier die Winkelgröße, nicht die „Pfeilrichtung“ oder die Orientierung der verschiedenen Winkel im Uhrzeigersinn.
Im Bild hier sieht du die Zentralelemente zusammen mit jeweils einem der dazu kongruenten Vielecke.
-
Erschließe die Kongruenzabbildungen.
TippsEine Drehung verändert die Orientierung einer Figur nicht.
Mit einer Spiegelung kannst du auch den Ort einer Figur verändern.
LösungKongruenzabbildungen sind Verschiebung, Drehung und Spiegelung. Zwei Figuren heißen kongruent, wenn sie durch Kongruenzabbildungen zur Deckung gebracht werden können. Hier ist die Aufgabe, jeweils die nötigen Kongruenzabbildungen anzugeben.
Mit einer Spiegelung kannst du durch die Wahl der Achse immer auch den Ort der Figur verändern. Eine Spiegelung ändert bei einer asymmetrischen Figur die Orientierung. Zwei der gezeigten Figurenpaare sind nicht kongruent: Ein regelmäßiges Siebeneck ist nicht zu einem unregelmäßigen kongruent. Die beiden Siebenecken, die wie eine „Fliege“ aussehen, sind deutlich verschieden.
Im Bild hier siehst du die kongruenten Figurenpaare zusammen mit der korrekt angegebenen Kongruenz. Bei den Spiegelungen ist jeweils auch die Spiegelachse mit eingezeichnet.
-
Vergleiche die Längen und Winkel.
TippsDie beiden Fünfecke sind kongruent.
Die beiden Fünfecke haben jeweils drei verschiedene Seitenlängen und drei verschiedene Winkelgrößen.
Die gleichen Winkel bzw. Seiten liegen bei den beiden Fünfecken an jeweils derselben Stelle.
LösungUm die Kongruenz von Figuren zu prüfen, kannst du ihre Seiten und Winkel vergleichen. Die beiden Figuren im Bild sind zueinander kongruent. Am einfachsten vergleichst du die Seiten und Winkel der Größe nach. Es ist meistens leicht zu erkennen, welcher Winkel der kleinste, d.h. der spitzeste ist. Beide spitzen Winkel dieser Fünfecke sind gleich und befinden sich jeweils am unteren Eckpunkt der Figuren. Auch den größten Winkel kannst du meistens leicht erkennen, es ist der stumpfste Winkel. Die Figuren sind beide achsensymmetrisch, daher kommt der größte Winkel jeweils zweimal vor und zwar jeweils links und rechts bei den beiden oberen Eckpunkten jedes Fünfecks.
Ähnlich wie mit den Winkeln kannst du auch mit den Seiten vorgehen: Die beiden längsten Seiten sind bei jedem der beiden Fünfecke deutlich zu erkennen. Sie liegen unten links und rechts und schließen den zuvor markierten kleinsten Winkel ein. Um die jeweils kürzesten Seiten zu erkennen, musst du genau hinschauen, denn die beiden schrägen Seiten oben links und rechts bei jedem der Fünfecke sind nur wenig kürzer als die horizontale Seite oben.
-
Prüfe die Aussagen.
TippsDer Umfang einer Figur ist die Summe ihrer Kantenlängen.
LösungFolgende Aussagen sind richtig:
- „Sind zwei Figuren kongruent, so haben sie denselben Umfang.“ Kongruente Figuren haben dieselbe Anzahl an Seiten und dieselben Seitenlängen. Daher ist auch die Summe der Seitenlängen, also der Umfang gleich.
- „Zwei Dreiecke mit denselben Winkeln sind kongruent, wenn sie dieselbe Fläche haben.“ Diese zwei Dreiecke sind einander ähnlich. Ähnliche Dreiecke sind kongruent, wenn sie dieselbe Größe haben. Die Größe kannst du an verschiedenen Merkmalen ablesen, z. B. den Seitenlängen, dem Umfang oder dem Flächeninhalt.
- „Bei zwei kongruenten Dreiecken haben entweder beide einen rechten Winkel oder keines von beiden hat einen rechten Winkel.“ Kongruente Dreiecke haben dieselben Winkel. Hat also eines der Dreiecke einen rechten Winkel, so auch das andere. Das Analoge gilt, wenn eines der beiden Dreiecke keinen rechten Winkel hat.
- „Ist die Figur $A$ kongruent zu der Figur $B$ und die Figur $B$ kongruent zu der Figur $C$, so ist auch $A$ kongruent zu $C$.“ Kannst du $A$ und $B$ durch Verschieben, Drehen oder Spiegeln (oder eine Kombination davon) zur Deckung bringen und danach $B$ und $C$, so hast du insbesondere $A$ und $C$ zur Deckung gebracht. Demnach sind sie kongruent.
- „Es gibt ein rechtwinkliges und ein stumpfwinkliges Dreieck, die zueinander kongruent sind.“ Hat ein Dreieck einen rechten Winkel, so sind die beiden anderen Winkel spitz. Hat es einen stumpfen Winkel, so sind ebenfalls die beiden anderen Winkel spitz. Daher kann ein Dreieck nicht zugleich einen rechten und einen stumpfen Winkel haben. Da kongruente Dreiecke dieselben Winkel haben, gibt es also keine kongruenten Dreiecke mit einem stumpfen und einem rechten Winkel, denn jedes dieser Dreiecke müsste sowohl einen rechten als auch einen stumpfen Winkel haben.
- „Hat ein Dreieck einen spitzen Winkel, so ist auch jedes dazu kongruente Dreieck spitzwinklig.“ Jedes Dreieck hat einen spitzen Winkel, aber nicht jedes Dreieck ist kongruent zu einem spitzwinkligen. Spitzwinklig bedeutet, dass alle Winkel spitz sind, dass es also nicht rechtwinklig oder stumpfwinklig ist.
- „Haben zwei Dreiecke denselben Umfang, so sind sie kongruent.“ Der Umfang ist die Summe der Seitenlängen. Zwei Dreiecke können denselben Umfang haben, ohne dass sie dieselben Seitenlängen haben. Zwei Dreiecke mit verschiedenen Seitenlängen sich nicht zueinander kongruent.
8.997
sofaheld-Level
6.601
vorgefertigte
Vokabeln
7.717
Lernvideos
37.370
Übungen
33.698
Arbeitsblätter
24h
Hilfe von Lehrkräften
Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Quadrat
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Was Ist Eine Viertelstunde
- Prisma
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Satz Des Pythagoras
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Schriftlich Multiplizieren
- Brüche gleichnamig machen
- Brüche Multiplizieren
- Brüche multiplizieren – Übungen
- Potenzgesetze
- Distributivgesetz
- Bruchgleichungen lösen – Übungen
- Flächeninhalt Dreieck
- Rationale Zahlen