30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Drehung von Figuren 05:10 min

Textversion des Videos

Transkript Drehung von Figuren

Achtung hart Steuerbord! Kapitän Petersson befindet sich auf Forschungsreise im Nordpolarmeer. Eisschollen, wohin das Auge reicht. Da fällt das Navigieren nicht gerade leicht. Mit Hilfe seiner Karte versucht Kapitän Petersson, einen Kurs durch das Eismeer zu finden. Dazu benutzt er sein Wissen über die Drehung von Figuren. Die Schollen lassen ihm nur eine Möglichkeit. Er muss sein Schiff hier entlang steuern und es dabei um diese Eisscholle drehen. Kapitän Petersson plant den Kurs auf seiner Karte. Das Schiff muss um 90 Grad um die Eisscholle gedreht werden. Zunächst sticht Kapitän Petersson mit dem Zirkel auf der Karte in dem Ort ein, um den er das Schiff drehen will. Diesen Punkt nennen wir Drehzentrum und markieren ihn mit einem Z. Als nächstes stellt Kapitän Petersson den Radius seines Zirkels auf einen der Eckpunkte seines Schiffes ein zum Beispiel diesen. Wir nennen diesen Punkt A. Dann zeichnet er einen Kreis mit dem eingestellten Radius um den Mittelpunkt Z. Das wiederholt Kapitän Petersson für alle Eckpunkte seines Schiffes. Jetzt wird das Schiff entlang dieser Kreise wie auf Schienen gedreht. Hierfür beginnen wir mit dem Punkt A und merken uns, auf welchem Kreis A liegt. Wir verbinden A mit Z und suchen mit dem Geodreieck den gesuchten Winkel alpha, um den das Schiff gedreht werden soll - das waren hier 90 Grad. Dann verbinden wir Z unter dem Winkel alpha mit dem Kreis, auf dem A liegt so. Dieser Punkt ist der Bildpunkt von A. Wir bezeichnen ihn mit A Strich. Das Vorgehen wiederholen wir mit allen Eckpunkten des Schiffes und verbinden die Bildpunkte anschließend. Damit haben wir das Schiff gedreht. Die gedrehte Figur nennt man "Bildfigur", und die ursprüngliche "Ursprungsfigur". Man sagt auch kurz "Original" und "Bild". Das gedrehte Schiff ist natürlich noch das gleiche Schiff - deshalb sind alle Längen und Winkel gleich geblieben. Das ist bei Drehungen immer so. Man sagt, Drehungen sind längentreu und winkeltreu. Und weil alle zugehörigen Längen und Winkel gleich sind, sehen Ursprungsfigur und Bildfigur gleich aus. Sie sind kongruent, also deckunsgleich. Oh nein, was ist das? Ein Eisberg direkt voraus! Es scheint keinen Weg an ihm vorbei zu geben. Aber halt! Der Eisberg dreht sich langsam..und Kapitän Petersson zückt seine Karte. Der Eisberg sieht aus wie ein regelmäßiges Sechseck, und er dreht sich um sich selbst - sein Drehzentrum Z liegt also hier. Immer, wenn er sich um 60° gedreht hat, sieht der Eisberg wieder gleich aus und gibt die Passage frei. Manche Figuren haben ein Drehzentrum Z in ihrem Inneren, um das man sie mit einem Winkel Alpha drehen kann, so dass sie wieder genau so aussehen wie vor der Drehung. Solche Figuren nennt man drehsymmetrisch. Der Drehwinkel darf dabei weder 0 Grad noch 360 Grad sein - wenn man gar nicht dreht oder eine volle Umdrehung macht, sehen natürlich alle Figuren aus wie vor der Drehung. Kapitän Petersson steuert vorsichtig durch die Passage und wir fassen nochmal zusammen. Eine geometrische Figur drehst du um ein Drehzentrum Z, indem du mit dem Zirkel durch jeden Eckpunkt der Figur Kreise um Z zeichnest. Dann verbindest du einen Eckpunkt mit Z und zeichnest mit dem Geodreieck den gewünschten Winkel alpha auf diese Verbindungslinie ein. Unter diesem Winkel verbindest du Z mit dem Kreis, auf dem die Ecke liegt, und zeichnest dort den Bildpunkt dieser Ecke ein. Das wiederholst du mit allen Eckpunkten der Figur und verbindest anschließend die Bildpunkte genau so wie die Ursprungspunkte. Die Längen und Winkel der Figur ändern sich dabei nicht. Für manche Figuren gibt es ein Drehzentrum Z und einen Drehwinkel alpha zwischen 0 und 360 Grad, so dass du sie auf sich selbst drehen kannst.

Solche Figuren heißen drehsymmetrisch. Von den ganzen Drehungen hat Kapitän Petersson wohl ein wenig die Orientierung verloren. Aber was ist das? Hat er tatsächlich..?

24 Kommentare
  1. ja das it sehr gut!!!!!!!!!!!!!!!

    Von Anja Hoess, vor 10 Tagen
  2. das video macht spass und es ist cool

    Von Furrerswiss, vor 17 Tagen
  3. bisschen schwer man könnte es genauer aber es ist gut

    Von Amir M., vor 3 Monaten
  4. Vielen Dank für euer positives Feedback. Es freut uns zu hören, dass euch das Video so gut gefällt. Viel Spaß weiterhin mit unseren Inhalten.
    Liebe Grüße aus der Redaktion

    Von Jonas Dörr, vor 4 Monaten
  5. Finde ich ein sehr gutes Viedeo danke :)

    Von M Hostettler, vor 4 Monaten
  1. Noch nie so ein gutes Video in Mathe auf Sofatutor gesehen.

    Von Maxsi, vor 4 Monaten
  2. Ein sehr schönes Video. Danke!

    LG,
    Anastasia.S :)

    Von Anastasia Markela, vor 4 Monaten
  3. :-DANKE

    Von Abboodasj, vor 4 Monaten
  4. Cool

    Von Natalie Weisner, vor 6 Monaten
  5. Es ist lustig mit dem Nordpol und den Weihnachtsmann

    Von Cq20030506, vor 7 Monaten
  6. Team Digital ist meine LLG (Lieblings lehrer gruppe)!
    Weiter so!

    Von Svenja Stark, vor 8 Monaten
  7. :] Mega cool! Bravo!

    Von Orlandoserban, vor 9 Monaten
  8. cool erklärt hilft mir für die Klassenarbeit

    Von A Ohms, vor 9 Monaten
  9. cooles video

    Von Ab Vogelsang, vor 9 Monaten
  10. Toll mit dem Schiff und dem Capitain

    Von Sonjaberndt, vor 9 Monaten
  11. Mega!Sehr gut erklärt :-)

    Von Amast, vor 10 Monaten
  12. Sehr gut

    Von Rsudh1802, vor 10 Monaten
  13. mega gut animiert !!! gut 5 Sterne !

    Von L Oltap Izz Da, vor 10 Monaten
  14. Dieses Video hat wirklich 5 Sterne verdient habe es sofort verstanden
    !!! Mega !!!

    Von Guima, vor 10 Monaten
  15. Leicht und gut erklärt.Danke.

    Von Natalia Becker13, vor 10 Monaten
  16. Richtig Gut gemacht (:

    Von Sebi R., vor 11 Monaten
  17. Gut erklärt ! Einfach und schön gemacht

    Von Mishra Tl, vor 12 Monaten
  18. Ein SUPER Video!!
    Es ist sehr kreativ erklärt aber überhaupt nicht verwirrend.
    Wirklich Super!!

    Von Caminades, vor etwa einem Jahr
  19. sehr gut erklärt
    danke

    Von Hbothner, vor mehr als einem Jahr
Mehr Kommentare

Drehung von Figuren Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Drehung von Figuren kannst du es wiederholen und üben.

  • Beschreibe das Vorgehen bei der Drehung einer Figur um einen Winkel $\alpha$ um das Drehzentrum $Z$.

    Tipps

    Hier ist der zweite Schritt abgebildet.

    Im letzten Schritt musst du alle Bildpunkte miteinander verbinden.

    So sieht Peterssons Karte aus, nachdem er sein Schiff gedreht hat.

    Lösung

    Wenn du eine ebene Figur um einen festen Winkel $\alpha$ um ein Drehzentrum $Z$ drehen möchtest, gehst du wie folgt vor.

    1. Du zeichnest mit einem Zirkel durch jeden Eckpunkt der Figur je einen Kreis um das Drehzentrum $Z$ ein.
    2. Dann verbindest du einen Eckpunkt mit dem Drehzentrum $Z$ und zeichnest mit dem Geodreieck den gewünschten Winkel $\alpha$ auf diese Verbindungslinie ein.
    3. Unter diesem eingezeichneten Winkel verbindest du das Drehzentrum $Z$ mit dem Kreis, auf dem der Eckpunkt liegt, und zeichnest dort den Bildpunkt dieser Ecke ein.
    4. Das wiederholst du mit allen Eckpunkten der Figur und verbindest anschließend die Bildpunkte so miteinander wie die Punkte der Ursprungsfigur.
  • Nenne die Eigenschaften drehsymmetrischer Figuren.

    Tipps

    Macht man keine oder eine volle Umdrehung, so sehen alle Figuren aus wie vor der Drehung.

    Eine volle Umdrehung entspricht $360^\circ$.

    Bei der Drehung wird eine Figur in einem festen Winkel um ein Drehzentrum gedreht.

    Lösung

    In dieser Aufgabe betrachten wir drehsymmetrische Figuren.

    Die Drehsymmetrie einer Figur liegt vor, wenn ein Drehzentrum im Inneren der Figur existiert, um das man die Figur in einem bestimmten Winkel drehen kann, sodass sie mit sich selbst zur Deckung kommt. Der Drehwinkel muss dabei kleiner als $\mathbf{360^\circ}$ und größer als $\mathbf{0^\circ}$ sein.

  • Gib an, welche Eigenschaften zwischen einer Ursprungsfigur und ihrer Bildfigur erfüllt sind.

    Tipps

    Kongruent bedeutet deckungsgleich.

    Bei einer Streckung ist der Abstand des Bildpunktes zum Streckzentrum ein anderer als der Abstand des Originalpunktes zum Streckzentrum.

    Bei der Drehung hingegen gilt $\overline{AZ}=\overline{A'Z}$. Bildpunkt und Originalpunkt haben also denselben Abstand zum Drehzentrum.

    Zwei Linien sind orthogonal zueinander, wenn sie sich in einem rechten Winkel schneiden.

    Lösung

    Kapitän Petersson stellt in seiner Zeichnung einige Auffälligkeiten fest. Diese möchten wir hier einmal festhalten.

    Eigenschaften der Drehung

    • Ursprungs- und Bildstrecke sind gleich lang. (Anders gesagt: längentreu)
    • Ursprungs- und Bildwinkel sind gleich groß. (Anders gesagt: winkeltreu)
    • Ursprungs- und Bildfigur sind deckungsgleich. (Anders gesagt: kongruent)
    • Ursprungs- und Bildpunkt haben denselben Abstand zum Drehzentrum.
    • Parallelität sowie Orthogonalität bleiben erhalten.
    Also sind Ursprungs- und Bildfigur kongruente Figuren und somit längen- und winkeltreu.

  • Ermittle die gesuchten Winkel.

    Tipps

    Hier siehst du, wie du ein Sechseck in sechs gleichseitige Dreiecke aufteilen kannst.

    Drehst du das Sechseck um den rot markierten Winkel, so kommt es mit sich selbst zur Deckung.

    Diesen Winkel erhältst du, indem du einen Vollwinkel durch sechs teilst.

    So kannst du ein gleichseitiges Dreieck in drei gleichschenklige Dreiecke einteilen.

    Den rot markierten Winkel erhältst du, indem du einen Vollwinkel durch drei teilst.

    Ein Vollwinkel entspricht $360^\circ$.

    Lösung

    Um den kleinsten Drehwinkel, bei dem drehsymmetrische Figuren mit sich selbst zur Deckung kommen, zu erhalten, teilen wir die jeweilige Figur in gleichschenklige oder auch gleichseitige Dreiecke ein.

    Anschließend teilen wir den Vollwinkel durch die Anzahl der resultierenden Dreiecke. So erhalten wir folgende Winkel.

    Achteck

    Ein Achteck kann man in acht gleichseitige Dreiecke einteilen. Somit ist der kleinste Drehwinkel für ein Achteck $360^\circ :8=45^\circ$.

    Sechseck

    Ein Sechseck kann man in sechs gleichseitige Dreiecke einteilen. Somit ist der kleinste Drehwinkel für ein Sechseck $360^\circ :6=60^\circ$.

    Quadrat

    Ein Quadrat kann man in vier gleichschenklige Dreiecke einteilen. Somit ist der kleinste Drehwinkel für ein Quadrat $360^\circ :4=90^\circ$.

    Gleichseitiges Dreieck

    Ein gleichseitiges Dreieck kann man in drei gleichschenklige Dreiecke einteilen. Somit ist der kleinste Drehwinkel für ein gleichseitiges Dreieck $360^\circ :3=120^\circ$.

    Wenn du dir sicher bist, dass es sich um eine drehsymmetrische Figur handelt, kannst du den kleinsten Drehwinkel, bei dem die Figur mit sich selbst zur Deckung kommt, auch bestimmen, indem du den Vollwinkel durch die Anzahl der Ecken deiner drehsymmetrischen Figur teilst.

  • Entscheide, welche Figuren drehsymmetrisch sind.

    Tipps

    Dreht man eine drehsymmetrische Figur in einem bestimmten Winkel um das Drehzentrum $Z$, so kommt sie wieder mit sich selbst zur Deckung. Der Drehwinkel muss dabei kleiner als $360^\circ$ und größer als $0^\circ$ sein.

    Was passiert, wenn du das Quadrat um $180^\circ$ drehst?

    Lösung

    Eine drehsymmetrische Figur liegt dann vor, wenn ein Drehzentrum existiert, um das man die Figur um einen bestimmten Winkel drehen kann, sodass sie mit sich selbst zur Deckung kommt.

    Der Drehwinkel muss dabei kleiner als $360^\circ$ und größer als $0^\circ$ sein.

    Diese Definition trifft hier auf folgende Figuren zu:

    • regelmäßiges Sechseck,
    • gleichseitiges Dreieck,
    • Kreis und
    • Quadrat.
    Das gleichschenklige Dreieck ist keine drehsymmetrische Figur, da diese nur bei keiner oder einer vollen Umdrehung mit sich selbst zur Deckung kommt.

  • Prüfe die Aussagen auf ihre Richtigkeit.

    Tipps

    Eine geometrische Figur drehst du um ein Drehzentrum $Z$, indem du ...

    1. ... mit dem Zirkel durch jeden Eckpunkt der Figur Kreise um das Drehzentrum $Z$ zeichnest.
    2. ... unter dem gewünschten Winkel das Drehzentrum $Z$ mit dem Kreis, auf dem der ursprüngliche Eckpunkt liegt, verbindest und dort den Bildpunkt dieser Ecke einzeichnest.

    Hier siehst du zur Hälfte die Ursprungsfigur (blau) und zur Hälfte die Bildfigur (orange) eines Sechsecks, das um $180^\circ$ um den Mittelpunkt gedreht wurde.

    Lösung

    Eine geometrische Figur drehst du um ein Drehzentrum $Z$, indem du ...

    1. ... mit dem Zirkel durch jeden Eckpunkt der Figur Kreise um das Drehzentrum $Z$ zeichnest.
    2. ... unter dem gewünschten Winkel das Drehzentrum $Z$ mit dem Kreis, auf dem der ursprüngliche Eckpunkt liegt, verbindest und dort den Bildpunkt dieser Ecke einzeichnest.
    • Somit liegen bei der Drehung einer Figur die zusammengehörigen Ursprungs- und Bildpunkte auf demselben Kreisbogen um das Drehzentrum $Z$.
    • Dreht man eine drehsymmetrische Figur um $180^\circ$, so verlaufen alle Verbindungsstrecken vom Ursprungspunkt zum Bildpunkt durch das Drehzentrum $Z$. Dem hier abgebildeten Sechseck kannst du das entnehmen.
    • Zudem sind Ursprungs- und Bildfigur stets deckungsgleich, das heißt, sie sind längen- und winkeltreu, also kongruent.
    • Eine drehsymmetrische Figur mit $12$ Ecken kommt bei einer Drehung um ihren Mittelpunkt um $30^\circ$ mit sich selbst zur Deckung. Diesen Winkel können wir rechnerisch ermitteln, indem wir $360^\circ :12=30^\circ$ rechnen.
    • Ein regelmäßiges Sechseck besitzt nicht sechs, sondern fünf Drehwinkel zwischen $0^\circ$ und $360^\circ$, bei denen es mit sich selbst zur Deckung kommt. Das Sechseck sieht nämlich nach jeder $60^\circ$-Drehung gleich aus. Damit kommt das Sechseck mit sich selbst zur Deckung bei einer Drehung um $60^\circ$, $120^\circ$, $180^\circ$, $240^\circ$, $300^\circ$ und $360^\circ$. Der sechste Winkel ist $360^\circ$ groß. Wir betrachten aber nur Winkel zwischen $0^\circ$ und $360^\circ$.
    • Außerdem kann man jede Figur in einem bestimmten Winkel drehen.