Über 1,2 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Binomialverteilung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 5.0 / 1 Bewertungen
Die Autor*innen
Avatar
Team Digital
Binomialverteilung
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Binomialverteilung

Die Binomialverteilung in der Mathematik

Wir wollen uns im Folgenden mit der Binomialverteilung beschäftigen und betrachten daher zunächst den Bernoulli-Versuch.

Bernoulli-Experiment

Bernoulli-Versuche werden auch Bernoulli-Experimente genannt.

Als Bernoulli-Experimente bezeichnet man Zufallsexperimente, bei denen es für jeden Einzelversuch genau zwei mögliche Ausgänge gibt, die sich gegenseitig ausschließen. Im Allgemeinen nennt man die möglichen Ausgänge Erfolg und Misserfolg.

Beispiele für solche Experimente sind beispielsweise der Münzwurf (Zahl, Kopf) oder auch das Losziehen (Gewinn, Niete).

Binomialverteilung – Herleitung und Definition

Im folgenden Abschnitt schauen wir uns zunächst die Herleitung an und formulieren dann die Definition.

Die Binomialverteilung ist eine Verteilung, mit der man die Wahrscheinlichkeit verschiedener Ergebnisse von Bernoulli-Versuchen berechnen kann.

Binomialverteilung – Herleitung

Man kann für die Mehrfachausführung eines Bernoulli-Experiments ein Baumdiagramm zeichnen. Die Wahrscheinlichkeit für einen Erfolg ist dann gegeben als $p$, die Wahrscheinlichkeit für einen Misserfolg ist dementsprechend $(1-p)$. Führt man das Experiment, zum Beispiel den Münzwurf, $n\text{-mal}$ aus, erhält man als Ergebnis ein n-Tupel, in dem die einzelnen Ergebnisse aufgezählt sind. Das könnte beispielsweise so aussehen:

$n \text{-Tupel:} ~ ~ ~ ( \text{Erfolg},\text{Misserfolg},\text{Erfolg},\text{Misserfolg}, ..., \text{Erfolg} ) $

Wir wollen jetzt herausfinden, wie groß die Wahrscheinlichkeit ist, nach $n$ Versuchen genau $k$ Erfolge zu erzielen. Dazu betrachten wir zunächst die Wahrscheinlichkeit entlang eines einzelnen Pfades, in dem es zu genau $k$ Erfolgen kommt. Die Wahrscheinlichkeiten für die Ergebnisse entlang eines Pfades müssen nacheinander multipliziert werden. Das können wir mithilfe der Wahrscheinlichkeiten $p$ und $(1-p)$ zusammenfassen:

$\underbrace{P(e_{k_i,n})}_{\text{Wahrscheinlichkeit \\ für \\ Tupel}} = \underbrace{p^{k}}_{k~ \text{Äste mit Erfolg}} \cdot \underbrace{(1-p)^{n-k}}_{(n-k) ~ \text{Äste mit Misserfolg}} $

Allerdings spielt die Reihenfolge der einzelnen Ergebnisse keine Rolle. Wenn wir beispielsweise bei zwei Würfen einmal Erfolg erreichen wollen, ist es egal ob wir Erfolg, Misserfolg werfen oder Misserfolg, Erfolg. Das bedeutet, es müssen alle möglichen Pfade zusammengezählt werden, in denen genau $k$ Erfolge vorkommen. Die Anzahl an Möglichkeiten erhalten wir durch den Binomialkoeffizienten:

$P(X=k) = \underbrace{\binom{n}{k}}_{Binomialkoeffizient}\cdot p^{k} \cdot (1-p)^{n-k}$

Das ist genau die Wahrscheinlichkeit dafür, bei $n$ Würfen $k$ Erfolge zu erzielen, wobei die Reihenfolge der Ergebnisse egal ist.

Binomialverteilung – Definition

Wenn wir diese Gleichung etwas allgemeiner als die Binomialfunktion aufschreiben, erhalten wir nun die Binomialverteilung:

$B_{n,p}(k) = \binom{n}{k}\cdot p^{k} \cdot (1-p)^{n-k} ~ ~ ~ \text{mit: } p \in [0,1] ; k \in [0,1,2,...,n] $

Wofür stehen das $n$, $p$ und $k$?

Kurze Zusammenfassung vom Video Binomialverteilung – Definition

In diesem Video lernst du die Binomialverteilung kennen und erfährst, wie sie mit Bernoulli-Experimenten zusammenhängt. Außerdem leiten wir für die Binomialverteilung eine Formel her. Du solltest dazu schon wissen, was der Binomialkoeffizient ist, wie ein Baumdiagramm aussieht und wie man Zufallsversuche darstellen kann. Neben Text und Video findest du zum Thema Binomialverteilung Aufgaben und Beispiele, mit denen du gleich dein Wissen festigen kannst.

Häufige Fragen zum Thema Binomialverteilung in der Mathematik

Was ist eine Binomialverteilung?
Wie erkennt man eine Binomialverteilung?
Was ist der Unterschied zwischen Bernoulli- und Binomialverteilung?

Transkript Binomialverteilung

"Binomialverteilung" was für ein Wort! Kann man ja mal so im Gespräch fallen lassen, einfach um Eindruck zu schinden! "Meine Erkenntnisse beruhen übrigens auf der BINOMIALVERTEILUNG." Da widerspricht dir keiner mehr. Sehr gut! Dann müssen wir jetzt nur noch selbst herausfinden, was es mit dieser "Binomialverteilung" auf sich hat. Um das zu verstehen, solltest du wissen, was ein Bernoulli-Experiment beziehungsweise eine Bernoulli-Kette ist und wie die Bernoulli-Formel lautet. Falls das nicht der Fall ist, schau dir das Thema am besten nochmal an. Hier kommt aber auch die Kurzfassung: Ein Bernoulli-Experiment ist ein Zufallsexperiment, bei dem wir nur zwischen zwei verschiedenen Ausgängen unterscheiden. "Treffer" oder "kein Treffer". Das klassische Beispiel hierzu ist der Münzwurf. Führen wir ein und dasselbe Bernoulli-Experiment (wie zum Beispiel eben den Münzwurf) MEHRFACH hintereinander aus, ergibt das eine Bernoulli-Kette. Und wenn wir dann die Wahrscheinlichkeit für "GENAU k Treffer" bei einer Bernoulli-Kette der "Länge n" mit der "Trefferwahrscheinlichkeit p" berechnen möchten, machen wir das mit DIESER Formel, der Bernoulli-Formel. Jetzt könnte man ja mal hingehen und die Wahrscheinlichkeiten für jede mögliche Anzahl an Treffern zu einer gegebenen Bernoulli-Kette ausrechnen. Das läuft dann darauf hinaus, eine Wahrscheinlichkeitsverteilung für diese Bernoulli-Kette aufzustellen. Und wie die dann aussieht, schauen wir uns jetzt mal genauer an. Eine Bernoulli-Kette ist eine BINOMIALVERTEILTE Zufallsgröße. Das "bi" in binomial steht für die ZWEI möglichen Ausgänge: Erfolg oder Misserfolg. Die Wahrscheinlichkeitsverteilung einer binomialverteilten Zufallsgröße nennen wir daher "BINOMIALverteilung". Sie ordnet jeder möglichen "Trefferanzahl k", die minimal bei Null und maximal bei n liegt, die zugehörige Wahrscheinlichkeit zu. Also die Wahrscheinlichkeit dafür, dass es genau "X gleich k" Treffer gibt. Wie jede andere Wahrscheinlichkeitsverteilung auch, ist die Binomialverteilung somit eine Zuordnung beziehungsweise eine Funktion. Und praktischerweise kennen wir sogar die Funktionsgleichung! Sie ist durch die Bernoulli-Formel gegeben und wird mit einem großen B sowie den Parametern n und p angegeben. Die unabhängige Variable unserer Funktion ist die "Trefferanzahl k", der dann durch die Bernoulli-Formel die entsprechende Wahrscheinlichkeit zugeordnet wird. Genug Theorie! Jetzt rechnen wir mal ganz konkret nach! Wir werfen eine Münze dreimal hintereinander. Wir haben also eine Bernoulli-Kette der Länge "n gleich drei". Die Trefferwahrscheinlichkeit kennen wir ebenfalls. Sie liegt bei "p gleich 0,5". Das sind dann auch schon alle Informationen, die wir brauchen, um uns die Binomialverteilung dieser Bernoulli-Kette anzuschauen. Weil wir das Zufallsexperiment insgesamt dreimal ausführen, können wir entweder null, einen, zwei oder drei Treffer landen. Die Wahrscheinlichkeiten für diese vier verschiedenen Trefferzahlen können wir jetzt mit Hilfe der Funktionsgleichung (sprich der Bernoulli-Formel) berechnen. Wir setzen dafür einfach die entsprechenden Werte ein. Zunächst die Werte für n und p, denn die sind als Parameter immer gleich. Dann setzen wir "k gleich null" und anschließend auch die anderen möglichen Trefferzahlen in unsere Formel ein. Bei diesen Rechnungen kann uns unser Taschenrechner einiges an Arbeit sparen! Der klassische Befehl, der auf den meisten Modellen verfügbar ist, lautet "binomPdf". Wir müssen auch im Taschenrechner die entsprechenden Werte für n, p und k einsetzen und der spuckt uns dann direkt das Ergebnis aus! Haben wir die Wahrscheinlichkeiten für alle Trefferzahlen ausgerechnet, steht unsere Binomialverteilung. Wir können sie, wie hier, in Form einer Tabelle angeben. Sehr häufig wird sie aber auch in Form eines Schaubildes, genauer gesagt in Form eines Histogramms dargestellt. Die Höhe jeder Säule steht hier für die Wahrscheinlichkeit, mit der die entsprechende Trefferanzahl eintritt. Die Darstellung von Binomialverteilungen durch Histogramme ist sehr anschaulich. Daher werden dir diese Schaubilder bei dem Thema immer wieder über den Weg laufen. Hier siehst du zum Beispiel das entsprechende Histogramm für einen vierfachen, einen zehnfachen und einen zwanzigfachen Münzwurf. Wenn wir uns die Histogramme genau anschauen, fällt auf, dass sie alle die gleiche Grundform haben. Außerdem fällt auf, dass alle Histogramme symmetrisch sind. Die Symmetrie kommt durch die zugrundeliegende Trefferwahrscheinlichkeit zustande, die bei allen Schaubildern fünfzig Prozent beträgt. Ändern wir die Trefferwahrscheinlichkeit zum Beispiel auf 0,75 hat das natürlich auch eine Auswirkung auf die resultierenden Schaubilder, die dann SO aussehen. An den Histogrammen lässt sich auch eine weitere wichtige Kenngröße der Binomialverteilung prima abschätzen: Der Erwartungswert. Den schauen wir uns aber lieber beim nächsten Mal an und fassen erstmal das Wichtigste zur Binomialverteilung auf einen Blick zusammen. Eine Binomialverteilung ist die Wahrscheinlichkeitsverteilung einer Bernoulli-Kette, also einer binomialverteilten Zufallsgröße. Bei dieser Zufallsgröße werden der Anzahl an Treffern, die bei "n" Versuchsdurchführungen erzielt werden können, die entsprechenden Wahrscheinlichkeiten zugeordnet. Wir können die Wahrscheinlichkeit für eine bestimmte "Trefferanzahl k" mit der Bernoulli-Formel berechnen. Dabei hilft uns dann im Normalfall der Taschenrechner, genauer gesagt der Befehl "binomPdf". Eine Binomialverteilung wird außerdem häufig in Form eines Histogramms dargestellt. An der Höhe der einzelnen Säulen lassen sich hier die Wahrscheinlichkeiten für die entsprechenden Trefferzahlen ablesen. Summieren wir all diese Wahrscheinlichkeiten auf, erhalten wir (wie bei jeder Wahrscheinlichkeitsverteilung) genau eins beziehungsweise einhundert Prozent. So, jetzt haben wir diesen unglaublich intelligent klingenden Begriff mit ein bisschen Leben gefüllt und DU kannst bei der nächsten Gelegenheit mal testen, wie gut er als Gesprächsstoff taugt. Viel Spaß dabei!