Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ausmultiplizieren mehrerer Summen

Erfahre, wie du mathematische Ausdrücke durch Ausmultiplizieren umgestalten kannst. Von einfachen Beispielen bis zur geometrischen Darstellung – alles verständlich erklärt. Interessiert? Das und mehr findest du im folgenden Text!

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 71 Bewertungen
Die Autor*innen
Avatar
Team Digital
Ausmultiplizieren mehrerer Summen
lernst du in der 7. Klasse - 8. Klasse

Ausmultiplizieren mehrerer Summen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ausmultiplizieren mehrerer Summen kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zum Ausmultiplizieren mehrerer Summen.

    Tipps

    Auch wenn Terme manchmal sehr unterschiedlich aussehen, können sie äquivalent sein.

    Hier wurden zwei Summen ausmultipliziert: $(k+r)\cdot (h+d)= k \cdot h +k \cdot d + r \cdot h + r\cdot d $

    Lösung

    Diese Aussagen sind falsch:

    „Sehen Terme unterschiedlich aus, kann man sie niemals ineinander umformen.“

    • Auch wenn Terme manchmal sehr unterschiedlich aussehen, können sie äquivalent sein. In diesem Fall kann man sie ineinander umformen.
    „Ausmultiplizieren ist keine Termumformung.“

    • Beim Ausmultiplizieren wird ein Term auf eine andere Art und Weise aufgeschrieben. Das ist eine Termumformung.
    Diese Aussagen sind richtig:

    „Beim Ausmultiplizieren wird ein Faktor, der mit einer Summe multipliziert wird, mit allen Summanden der Summe einzeln multipliziert.“

    • Durch einen Term ausgedrückt, sieht das so aus: $a (b+c)=a \cdot b + a\cdot c = ab+ac$
    „Die Multiplikation zweier Summen kann man allgemein so schreiben: $(k+r)\cdot (h+d)$“

    „Möchte man zwei Summen ausmultiplizieren, muss man jeden Summanden der ersten Klammer mit allen Summanden der zweiten Klammer multiplizieren.“

    • Hier wurden zwei Summen ausmultipliziert: $(k+r)\cdot (h+d)= k \cdot h +k \cdot d + r \cdot h + r\cdot d $
  • Beschreibe, wie man zwei Summen ausmultipliziert.

    Tipps

    Jeder Summand der ersten Klammer wird mit allen Summanden der zweiten Klammer multipliziert.

    Nach der Multiplikation kannst du gleichartige Terme zusammenfassen. Zum Beispiel:

    $3yx+2yx=5yx$

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Das Ausmultiplizieren von zwei allgemeinen Summen kannst du so ausdrücken:

    $(k+r)\cdot (h+d)= k \cdot h + k \cdot d + r \cdot h + r\cdot d $“

    • Jeder Summand der ersten Klammer wird mit allen Summanden der zweiten Klammer multipliziert.
    „Wenden wir das auf den gegebenen Term an, erhalten wir:

    $(2x+5y) \cdot (7x+3y)= 2x \cdot 7x+2x \cdot 3y+ 5y\cdot 7x + 5y \cdot 3y$

    Vereinfacht ergibt sich dann:

    $14x^2+41xy+15y^2$“

    • Auch hier musst du alle Summanden miteinander multiplizieren. Anschließend kannst du gleichartige Terme zusammenfassen.
  • Wende die Regeln zum Ausmultiplizieren zweier Summen an.

    Tipps

    Multipliziere jeden Summanden der ersten Klammer mit beiden Summanden der zweiten Klammer.

    Gleichartige Terme kannst du zusammenfassen. Gleichartige Terme sind Terme, in denen die gleichen Variablen vorkommen. Zum Beispiel sind $3x$ und $4x$ gleichartig. Du kannst sie also zu $7x$ zusammenfassen.

    Lösung

    Du kannst die Terme verbinden, indem du die Summen ausmultiplizierst. Multipliziere dabei jeden Summanden der ersten Klammer mit beiden Summanden der zweiten Klammer. So erhältst du:

    $\begin{array}{ll} \\ (2x+y) \cdot (3x+2y)&=2x \cdot 3x+ 2x \cdot 2y + y \cdot 3x + y \cdot 2y\\ &= 6x^2+4xy+3xy+2y^2\\ &=6x^2+7xy+2y^2\\ \\ \end{array}$

    $\begin{array}{ll} (x+y) \cdot (3x+3y)&=x \cdot 3x + x \cdot 3y + y \cdot 3x+ y \cdot 3y\\ &=3x^2+3xy+3xy+3y^2\\ &=3x^2+6xy+3y^2\\ \\ \end{array}$

    $\begin{array}{ll} (3x+2) \cdot (4y+3)&=3x \cdot 4y + 3x \cdot 3 + 2 \cdot 4y+ 2 \cdot 3\\ &=12xy+9x + 8y+6\\ \\ \end{array}$

    $\begin{array}{ll} (x+2) \cdot (3y+2)&=x \cdot 3y + x \cdot 2 + 2 \cdot 3y +2 \cdot 2\\ &=3xy+2x + 6y+4\\ \end{array}$

  • Bestimme die ausmultiplizierte Form der Terme.

    Tipps

    So multiplizierst du zwei allgemeine Summen aus:

    $(k+r)\cdot (h+d)= k \cdot h + k \cdot d + r \cdot h + r\cdot d $

    Gleichartige Terme kannst du zusammenfassen. Ein gleichartiger Term ist ein Term, in dem die gleichen Variablen vorkommen. Zum Beispiel sind die Terme $3x$ und $4x$ gleichartig.

    Lösung

    Du kannst die Terme verbinden, indem du die Summen ausmultiplizierst. Multipliziere dabei jeden Summanden der ersten Klammer mit beiden Summanden der zweiten Klammer. So erhältst du:

    $\begin{array}{ll} \\ (5x+4y) \cdot (6x+7y)&= 5x \cdot 6x +5x \cdot 7y+ 4y \cdot 6x + 4y \cdot 7y\\ &=30x^2+35xy+24xy +28y^2\\ &=30x^2+59xy +28y^2\\ \\ \end{array}$

    $\begin{array}{ll} \\ (2x+4y) \cdot (9x+8y) &=2x \cdot 9x + 2x \cdot 8y + 4y \cdot 9x + 4y \cdot 8y\\ &=18x^2+16xy+36xy +32y^2\\ &=18x^2+52xy +32y^2\\ \\ \end{array}$

    $\begin{array}{ll} \\ (7x+3y) \cdot (2y+5x)&=7x \cdot 2y + 7x \cdot 5x + 3y \cdot 2y + 3y \cdot 5x\\ &=35x^2+14xy+15xy +6y^2\\ &=35x^2+29xy +6y^2\\ \\ \end{array}$

    $\begin{array}{ll} \\ (4y+3x) \cdot (7x+3y)&=4y \cdot 7x + 4y \cdot 3y + 3x \cdot 7x + 3x \cdot 3y\\ &=21x^2+28xy+9xy +12y^2\\ &=21x^2+37xy +12y^2\\ \\ \end{array}$

  • Beschreibe die geometrische Darstellung des Ausmultiplizierens zweier Summen.

    Tipps

    Du kannst den Flächeninhalt des großen Rechtecks bestimmen, indem du seinen Flächeninhalt direkt bestimmst. Das ist hier die linke Seite der Gleichung.

    Du kannst aber auch die Flächeninhalte der Teilrechtecke bestimmen und anschließend addieren. Das ist die rechte Seite der Gleichung.

    Du kannst die Terme zuordnen, indem du die Seitenlängen der jeweiligen Rechtecke multiplizierst.

    Lösung

    Jeder Term entspricht einem Teil des gesamten Rechtecks. Du kannst die Terme zuordnen, indem du die Seitenlängen der jeweiligen Rechtecke multiplizierst. Die Seitenlängen des gelben Rechtecks sind zum Beispiel $c$ und $b$. Also gehört dieses Rechteck zum Term $bc$. Mit diesen Überlegungen kannst du alle anderen Terme zuordnen.

  • Ermittle die korrekten Rechnungen.

    Tipps

    Du kannst bestimmen, welche Rechnungen korrekt sind, indem du die Summen/Differenzen ausmultiplizierst. Multipliziere also alle Teile der ersten Klammer mit beiden Teilen der zweiten Klammer.

    Beachte dabei die Vorzeichen. Erinnere dich, dass die Multiplikation zweier Faktoren mit ungleichen Vorzeichen $(+/-)$ oder $(-/+)$ ein negatives Ergebnis $(-)$ und mit gleichen Vorzeichen $(+/+)$ oder $(-/-)$ ein positives Ergebnis $(+)$ ergibt.

    Lösung

    Du kannst bestimmen, welche Rechnungen korrekt sind, indem du die Summen bzw. Differenzen ausmultiplizierst. Multipliziere also alle Teile der ersten Klammer mit beiden Teilen der zweiten Klammer. Beachte dabei die Vorzeichen. Erinnere dich, dass die Multiplikation zweier Faktoren mit ungleichen Vorzeichen, also $(+/-)$ oder $(-/+)$, ein negatives Ergebnis $(-)$ ergibt. Haben die beiden Faktoren gleiche Vorzeichen $(+/+)$ oder $(-/-)$, so ist das Produkt positiv $(+)$. So erhältst du, dass diese Rechnungen falsch sind:

    $(2x-8y) \cdot (3y+3x)=8x^2-18xy+24y^2$

    • Hier rechnen wir:
    $\begin{array}{lllll} && (2x-8y) \cdot (3y+3x) &=& 2x \cdot 3y + 2x \cdot 3x-8y \cdot 3y -8y \cdot 3x \\ && &=& 6xy + 6x^2-24y^2 -24xy \\ && &=& 6x^2-24xy+6xy-24y^2 \\ && &=& 6x^2-18xy-24y^2 \\ \\ \end{array}$

    $(8y+3) \cdot (x-2y)=-16y^2-6y-8xy+3x$

    • Hier wird gerechnet:
    $\begin{array}{lllll} && (8y+3) \cdot (x-2y) &=& 8y \cdot (-2y) +3 \cdot x + 8y \cdot x +x \cdot (-2y) \\ && &=& -16y^2 +3x + 8xy -2xy \\ && &=& -16y^2 +3x + 6xy \\ \\ \end{array}$

    Diese Rechnungen sind korrekt:

    • $(3x-4) \cdot (5x-3)=15x^2-9x-20x+12=15x^2-29x+12$
    • $(8x-7y) \cdot (x-y)=8x^2-7xy-8xy+7y^2=8x^2-15xy+7y^2$