Ausklammern und Ausmultiplizieren mit Potenzen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Was ist Ausklammern?

Ausklammern ganzer Summanden

Terme ausklammern und ausmultiplizieren

Ausklammern und Ausmultiplizieren mit Potenzen

Ausklammern des größten gemeinsamen Teilers

Ausklammern bei Differenzen und Quotienten

Ausmultiplizieren mehrerer Summen

Ausmultiplizieren mehrerer Differenzen

Verschachtelte Klammern

Klammern auflösen – Übung

Ausklammern – Übungen
Ausklammern und Ausmultiplizieren mit Potenzen Übung
-
Beschreibe, wie du beim Ausklammern und Ausmultiplizieren vorgehst.
TippsDas Ausmultiplizieren ist die Umkehrung des Ausklammerns. Dabei wird eine Summe oder Differenz mit dem Faktor vor der Klammer multipliziert.
Das Volumen eines Quaders berechnen wir, indem wir die Grundfläche mit der Höhe multiplizieren. Bei einem Würfel sind alle drei Seiten gleich lang, also insbesondere die beiden der Grundfläche und die der Höhe.
LösungBeim Ausklammern entspricht der Faktor vor der Klammer dem größten gemeinsamen Faktor der Summanden oder des Minuenden und der Subtrahenden. Dabei handelt es sich also um den Faktor, der in allen Gliedern des gegebenen Terms vorkommt. Innerhalb der Klammern schreibt man dann die Summanden oder den Minuenden und die Subtrahenden, die mit diesem Faktor multipliziert wieder den alten Term ergeben würden.
In unserem Beispiel ist der größte gemeinsame Faktor die Grundfläche der Quader, also $a^2$. Diesen klammern wir aus und erhalten:
$a^3 +a^2\cdot b = a^2\cdot a+a^2\cdot b= a^2\cdot(a+b)$
Das Ausmultiplizieren ist die Umkehrung des Ausklammerns. Dabei wird eine Summe oder Differenz mit dem Faktor vor der Klammer multipliziert, indem man jeden einzelnen Summanden oder den Minuenden und die Subtrahenden innerhalb der Klammer mit dem Faktor außerhalb der Klammer multipliziert.
-
Schildere den Ablauf beim Ausklammern des jeweiligen Terms.
TippsWir schauen uns üblicherweise zunächst die Zahlen und dann die Potenzen an.
Die Primfaktorzerlegung für $33$ sieht zum Beispiel so aus $33= 3\cdot 11$
LösungWir betrachten nun folgenden Term:
- $10\cdot x^3 \cdot y^5 - 15 \cdot x^5 \cdot y^2$
- $10=2\cdot 5$
- $15=3\cdot 5$
- $10\cdot x^3 \cdot y^5 - 15 \cdot x^5 \cdot y^2 = 2\cdot \color{#669900}{5}\cdot x^3 \cdot y^5 - 3\cdot \color{#669900}{5} \cdot x^5 \cdot y^2$
- $u^v \cdot u^w= u^{v+w}$
- $x^5=x^{3+2}=x^3 \cdot x^2$
- $y^5=y^{2+3}=y^2 \cdot y^3$
- $10\cdot x^3 \cdot y^5 - 15 \cdot x^5 \cdot y^2 = \color{#669900}{5 \cdot x^3 \cdot y^2 } \cdot (2\cdot y^3 - 3\cdot x^2)$
-
Entscheide, welche Terme durch Ausklammern oder Ausmultiplizieren ineinander überführt werden können.
TippsBei den Zahlen ist es nützlich, sich die Primfaktorzerlegung anzuschauen.
Für $15a+21b$ gilt zum Beispiel:
- $15=3\cdot 5$
- $ 21=3\cdot 7$
$15a+21b=3\cdot(5a+7b)$
Bei den Potenzen ist es hilfreich, sie mit diesem Potenzgesetz zunächst sinnvoll umzuformen.
Zum Beispiel kannst du bei $x^3y+x^2z$ schreiben:
$x^3y+x^2z=x^{2+1}y+x^2z=x^2\cdot xy+x^2z$
Damit siehst du, dass du $x^2$ ausklammern kannst.
$x^3y+x^2z=x^2\cdot(xy+z)$
LösungDie folgenden Terme müssen ausgeklammert werden:
Term 1: $~4x^2y + 8x^3y^2 + 32x^5 y^8$
Wir schauen uns zunächst für die Zahlen $4=2\cdot 2$ und $8=2\cdot 2\cdot 2$ und $32= 2^5$ die Primfaktorzerlegungen an, damit ist $2 \cdot 2 =4$ in jedem Summanden enthalten und wir können $4$ wie folgt ausklammern:
- $4x^2y + 8x^3y^2 + 32x^5 y^8 = 4(x^2y + 2x^3y^2 + 16x^5 y^8)$
- $u^v \cdot u^w= u^{v+w}$
- $4(x^2y + 2x^3y^2 + 16x^5 y^8)=4(x^2y + 2x^2xy^2 + 16x^2x^3 y^8)=4x^2(y + 2xy^2 + 16x^3 y^8)$
- $4x^2y + 8x^3y^2 + 32x^5 y^8 = \color{#99CC00}{4x^2y} (1+2xy+8x^3y^7)$
Term 2: $~3x^5z^2y-7zy^6x^5$
Auch bei Differenzen können wir auf diese Art und Weise vorgehen:
- $3x^5z^2y-7zy^6x^5= 3 \cdot x^5 \cdot y \cdot z \cdot z - 7 \cdot x^5 \cdot y \cdot y^5 \cdot z = \color{#99CC00}{x^5yz (3z-7y^5)}$
Term 3: $~4x^2y^5(3x^3+6yz)$
Dazu wird jeder Summand in der Klammer einzeln mit dem Faktor multipliziert:
- $4x^2y^5(3x^3+6yz)= 4x^2y^5\cdot 3x^3+6yz\cdot 3x^3 = \color{#99CC00}{12x^5y^5+24x^2y^6z}$
Term 4: $~(x-1)y^2z$
Das Gleiche gilt auch bei Differenzen innerhalb der Klammer. Also:
- $(x-1)y^2z= x\cdot y^2z-1\cdot y^2z = \color{#99CC00}{xy^2z-y^2z}$
-
Prüfe, an welcher Stelle der Rechnung zum ersten Mal ein Fehler auftritt.
TippsGehe Zeile für Zeile vor. Überprüfe zunächst die Primfaktorzerlegung der Zahlen und dann, ob die Potenzgesetze korrekt angewendet wurden.
LösungTerm 1: $~15x^2y+45xyz $
Hier wurde beim Ausklammern die $3$ vergessen. Die Primfaktorzerlegung der Zahlen $15$ und $45$ lautet wie folgt:
- $15=3\cdot 5$
- $45=3\cdot 3 \cdot 5$
- $15(x^2y+\color{#669900}{3}xyz)=15xy(x+\color{#669900}{3}z)$
Term 2: $~(17xy+2x^2a-3az)\cdot (-3x^5y^2)$
Der Faktor außerhalb der Klammer ist negativ, damit ändert sich für jeden Summanden (oder Subtrahenden und Minuenden) das Vorzeichen. Wir erhalten also:
- $-17xy \cdot 3x^5y^2\color{#669900}{- 2x^2a \cdot 3x^5y^2}+ 3az \cdot 3x^5y^2$
- $\color{#669900}{-51x^6y^3} + 6x^7ay^2+ 9azx^5y^2$
Term 3: $~33x^3y-45x^8y^3z-3x^2x^2y^2$
Man klammert zunächst die $3$ aus:
- $3(11x^3y - 15x^8y^3z - x^2x^2y^2)$
- $= 3x^3y (11-15x^5y^2z-\color{#669900}{xy})$
Aufgabentyp: Ausklammern
-
Bestimme, welche Faktoren du bei den gegebenen Termen ausklammern kannst.
TippsBei den Zahlen ist es nützlich, sich die Primfaktorzerlegung anzuschauen.
Für $14a+35b$ gilt zum Beispiel:
- $14=2\cdot 7$
- $ 35=5\cdot 7$
$14a+35b=7\cdot(2a+5b)$
Dieses Potenzgesetz hilft dir zu erkennen, welche Potenzen du ausklammern kannst.
Achte beim Ausklammern von Potenzen mit gleichen Basen darauf, dass vor der Klammer die Potenz mit dem kleinsten Exponenten steht und in der Klammer nur noch Potenzen, die um den kleinsten Exponenten vermindert wurden.
Zum Beispiel: $3\cdot x^2+7\cdot x^4=x^2 \cdot (3+7x^2)$
LösungWir schauen uns die Terme nacheinander an:
Erster Term: $a^2\cdot a+a^2\cdot b$
- Hier können wir leicht erkennen, dass in beiden Summanden $a^2$ vorkommt, also:
$~$
Zweiter Term: $10\cdot x^3 \cdot y^5 - 15 \cdot x^5 \cdot y^2$
- Wir schauen uns zunächst für die Zahlen $10=2\cdot 5$ und $15=3\cdot 5$ die Primfaktorzerlegungen an:
Dabei erkennen wir, dass die $5$ in beiden Faktoren enthalten ist.
- Für die Potenzen nutzen wir das folgende Gesetz:
- Wir suchen für Potenzen gleicher Basis, jeweils die mit dem kleinsten Exponenten und schreiben dann unsere Summanden so um, dass dieser in jedem auftaucht. Für die Basis $y$ ist die Potenz mit dem kleinsten Exponenten zum Beispiel $y^2$, für $x$ ist es $x^3$. Den Minuend können wir dann mit $y^5 = y^{3+2} = y^3 \cdot y^2$, den Subtrahend mit $x^5=x^{3+2}=x^3 \cdot x^2$ umschreiben:
- Auf die gleiche Weise sehen wir, dass $y^2$ sowohl im Minuend als auch im Subtrahend vorkommt und wir es daher ausklammern können. Es ergibt sich:
$~$
Dritter Term: $4\cdot m^2 \cdot n^3 + 8\cdot m^2\cdot n^4$
$4\cdot m^2 \cdot n^3 + 8\cdot m^2\cdot n^4 = \color{#99CC00}{4\cdot m^2 \cdot n^3} \color{black}{~\cdot~ (1+2n)}$
-
Entscheide, ob die Termumformungen korrekt sind.
TippsBeachte die Potenzgesetze:
- $u^v\cdot u^w=u^{v+w}$
- $u^{-1}=\frac 1 u$
LösungTerm 1: $(4x^3y^0+5y^2)\cdot x^{-3} = 4+5y^2x^{-3}$ $\checkmark$
$(4x^3y^0+5y^2)\cdot x^{-3}$
- $y^0=1$ können wir weglassen. Ausmultiplizieren ergibt:
- Mit $u^v\cdot u^w=u^{v+w}$ können wir vereinfachen:
$~$
Term 2: $x^b+6y^2x^{b+3}+7x^{b-1}za^a= x^{b-1}(x^1+6y^2x^{4}+7za^a)$ $\checkmark$
- Die einzige Basis, die in allen Summanden zu finden ist, ist $x$. Vorausgesetzt $b$ ist positiv, so ist der kleinste zu findende Exponent bei $x$ das $b-1$. Da wir $u^v\cdot u^w=u^{v+w}$ anwenden können, gilt:
$x^{b+3} = x^{b-1+1+3} = x^{b-1} \cdot x^{4}$
- Benutzen wir diese Umstellungen für $x^b$ und $x^{b+3}$, so können wir den Term wie folgt umstellen:
- Nun können wir $x^{b-1}$ als Faktor vor die Klammer schreiben und in die Klammer alle Summanden, die um diesen Faktor verringert wurden.
Term 3: $(4x^3y^0+5y^2)\cdot x^{-3} = 5y^2x^{-3}$ Falsch, siehe Term 1.
$~$
Term 4: $(9x^ay^{m-n}+5x^2)\cdot 3y^{n}x^{-3} = 15 x^{-1} \cdot y^n + 27x^{a-3}y^m$ $\surd$
- Zunächst wird ausmultipliziert:
- Mit $u^v\cdot u^w=u^{v+w}$ können wir vereinfachen:
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt