30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Klammern auflösen – Übung

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Gib eine Bewertung ab!
Die Autor*innen
Avatar
Team Digital
Klammern auflösen – Übung
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Grundlagen zum Thema Klammern auflösen – Übung

Inhalt

Klammern: Erklärung

In der Mathematik sind Klammern Symbole, die eine Hierarchie innerhalb von Termen erzeugen. Ergänzend zu den üblichen Rechengesetzen geben Klammern an, welcher Teil eines Terms zuerst berechnet wird. Ausdrücke in Klammern werden stets zuerst berechnet. Dabei werden im Normalfall die Symbole „$($“ für das Öffnen einer Klammer und „$)$“ für das Schließen einer Klammer verwendet. Zur Übersichtlichkeit gibt es jedoch auch die Möglichkeit, eckige Klammern, also „$[$“ und „$]$“, zu verwenden.

  • Zum Beispiel geht Punkt vor Strich: $2+3\cdot 4=2+12=14$
  • Klammern gehen vor Punktrechnung: $(2+3)\cdot 4=5\cdot 4=20$. Zunächst wird der Wert des Terms in der Klammer berechnet $2+3=5$ und dann wird dieser Wert mit $4$ multipliziert.

Klammern auflösen bedeutet, dass ein gegebener Term ohne Klammern geschrieben wird. Unter der Beachtung bestimmter Regeln ist es so möglich, jeden Term auch ohne Klammern zu schreiben. Wie kann man solche Klammern auflösen?

Klammern auflösen: Übungen

Plus vor einer Klammer Der Term $+(3+4)$ steht für $(+1)\cdot (3+4)$. Die Multiplikation mit $1$ ändert den Wert eines Termes nicht. Das bedeutet, dass $+(3+4)=3+4$ ist. Steht ein Pluszeichen vor einer Klammer, so kann die Klammer weggelassen werden.

Beispiele

  • $+(3+x)=3+x$
  • $+(x-8)=x-8$

Minus vor einer Klammer Der Term $-(3+4)$ steht für $(-1)\cdot (3+4)$. Das Minuszeichen vor einer Klammer entspricht somit dem Produkt der Zahl $-1$ mit dem Term in Klammern.

Ein Faktor vor einer Klammer Steht ein Faktor vor einer Klammer, dann muss jeder Term in der Klammer mit dem Faktor multipliziert werden. Dies wird als Distributivgesetz oder auch Verteilungsgesetz bezeichnet.

Allgemein wird dies so formuliert: $a\cdot (b+c)=a\cdot b+a\cdot c$. Dies gilt auch, wenn der Faktor hinter der Klammer steht, da die Multiplikation vertauschbar oder auch kommutativ ist.

Beispiele

  • $3\cdot (2+4)=3\cdot 2+3\cdot 4$
  • $(-2)\cdot (x+4)=(-2)\cdot x+(-2)\cdot 4=-2x-8$
  • $(-1)\cdot (3+4)=(-1)\cdot 3+(-1)\cdot 4=-3-4=-7$

Das letzte Beispiel führt zu der folgenden Merkregel für ein Minus vor einer Klammer: Steht ein Minuszeichen vor einer Klammer, so werden die Vorzeichen der Terme in der Klammer umgedreht.

Beispiele

  • $-(3+x)=-3-x$
  • $-(4-y)=-4+y$
  • $-(-x+2)=x-2$
  • $-(-y-4)=y+4$

Das Produkt zweier Terme in Klammern Schließlich können auch zwei Klammerterme miteinander multipliziert werden. Auch hierfür wird das Distributivgesetz verwendet:

$\begin{array}{rcl} (3+5)\cdot (4+2)&=&(3+5)\cdot 4+(3+5)\cdot 2\\ &=&4\cdot (3+5)+2\cdot (3+5)\\ &=&4\cdot 3+4\cdot 5+2\cdot 3+2\cdot 5 \end{array} $

Es wird also jeder Term in der linken Klammer mit jedem Term in der rechten multipliziert.

Beispiele

$\begin{array}{rcl} (x+4)\cdot (y+3)&=&(x+4)\cdot y+(x+4)\cdot 3\\ &=&y\cdot (x+4)+3\cdot (x+4)\\ &=&y\cdot x+y\cdot 4+3\cdot x+3\cdot 4\\ &=&x\cdot y+4\cdot y+3\cdot x+12 \end{array} $

$\begin{array}{rcl} (x-y)\cdot (3t-7)&=&(x-y)\cdot 3t+(x-y)\cdot (-7)\\ &=&3\cdot (x-y)+(-7)\cdot (x-y)\\ &=&3\cdot x+3\cdot (-y)+(-7)\cdot x+(-7)\cdot (-y)\\ &=&3\cdot x-3\cdot y-7\cdot x+7\cdot y \end{array} $

Verwendung – binomische Formeln

Ein Spezialfall des Produktes zweier Klammern sind die binomischen Formeln. 1. binomische Formel: $(a+b)^2=a^2+2ab+b^2$

2. binomische Formel: $(a-b)^2=a^2-2ab+b^2$

3. binomische Formel: $(a+b)\cdot (a-b)=a^2-b^2$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.131

sofaheld-Level

6.572

vorgefertigte
Vokabeln

9.487

Lernvideos

40.528

Übungen

36.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden