sofatutor 30 Tage kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Ausklammern des größten gemeinsamen Teilers 04:55 min

Textversion des Videos

Transkript Ausklammern des größten gemeinsamen Teilers

Das ist Gina. Sie liebt es, draußen in der Natur Flöte zu spielen. Ginas Freundin Gabrielle skatet am liebsten im Skaterpark in der Stadt. Wow, die geht ja ab! Das ist Tim. Er verbringt am liebsten seine Zeit mit seinem Chamäleon Oskar. Drei Freunde also mit drei sehr unterschiedlichen Hobbys. Gina mag aber auch noch viele andere Dinge. Zum Beispiel Kreuzworträtsel, Töpfern, Malerei, Origami, Karaoke – eine wirklich lange Liste. Gabrielle mag außer zu skaten unter anderem auch noch Fotografie, Musik, Snowboarden, Snakeboarden, Filme – Eine ganze Menge an Hobbies! Tadeo interessiert sich noch fürs Zeichnen, für Schauspielerei, für Sudokus, für seine Insektensammlung, fürs Kaffeerösten, und und und. Die drei wollen etwas zusammen unternehmen, und zwar etwas, dass sie alle mögen. Aber wie sollen wir dieses gemeinsame Hobby herausfinden? Es ist so, als müssten wir den größten gemeinsamen Teiler finden, den GGT. Wir können also diese alltägliche Fragestellung mithilfe der Mathematik lösen. Mathematische Ausdrücke wie Polynome können vereinfacht werden, indem man den größten gemeinsamen Teiler ausklammert. Dazu nutzt man einfach die Umkehrung des Distributivgesetzes. Schauen wir uns ein Beispiel an: 4x + 28. Die 4 ist der größte gemeinsame Teiler beider Terme. Wir kehren also das Distributivgesetz um und klammern sie aus. Vor der Klammer steht der GGT. In der Klammer steht, was vom Ausdruck übrigbleibt, nachdem man alle Terme durch den GGT geteilt hat. Hier noch ein Beispiel: 4x2 + 28x. Das kannst du auch so schreiben: 4 mal x mal x + 4 mal 7 mal x. Hm, in beiden Termen kommt der Faktor 4 vor und mindestens ein x als Faktor. Wir können also die 4 ausklammern und auch ein x. Wir klammern also den GGT 4x aus und schreiben dann in die Klammer das, was von unserem Ausdruck übrigbleibt, wenn wir alle Terme durch diesen GGT geteilt haben. Denk dran, dein Ergebnis zu überprüfen. Und zwar mit dem Distributivgesetz. Sieht gut aus! Manchmal stellen Mathelehrer Aufgaben, die zunächst unlösbar erscheinen, es mit dem richtigen Lösungsweg aber gar nicht sind. Zum Beispiel die hier. Oh je, was für ein Brocken: 4x3y2 + 12x2y - 4x. 2 mal 2, mal x mal x mal x, mal y mal y plus 2 mal 2 mal 3, mal x mal x, mal y minus 2 mal 2, mal x. 4x ist der GGT. Klammern wir ihn also aus. Okay, das ist das Ergebnis: 4x mal das Trinom x2y2 + 3xy - 1. Wow, das war eine Menge Arbeit! Musst du jedes Mal jeden Term in seine Einzelteile zerlegen? Nein, wahrscheinlich findest du den GGT meistens auch, ohne das zu tun. Fassen wir zusammen: Um den größten gemeinsamen Teiler eines Polynoms zu finden, suchst du die Faktoren, die alle Terme des Polynoms gemeinsam haben. Zurück zu unseren drei Freunden. Haben sie ihr gemeinsames Hobby, also ihren GGT, gefunden? Gina und Tim mögen Sudokus, Gabrielle aber nicht. Das ist er also nicht. Aber sie mögen alle Karaoke. Das ist ihr Hobby-GGT. Aber über Musikgeschmack kann man sich bekanntlich streiten.

3 Kommentare
  1. Hallo Rusch67, wenn du die -1 bei Zeitindex 4:03 meinst, kann ich dir helfen: Der ursprüngliche Term hatte 3 Glieder, nämlich 4x³y², 12x²y und -4x. Aus allen dreien kann man 4x herausziehen, beim letzten Term bleibt dann -1 übrig. Liebe Grüße aus der Redaktion.

    Von Albrecht Kröner, vor 7 Monaten
  2. woher kommt die -1 im Beispiel

    Von Rusch67, vor 7 Monaten
  3. tolles viedeo ;ICH HABE ALLES FERSANDEN; DANKE

    Von Afra 1, vor 12 Monaten

Ausklammern des größten gemeinsamen Teilers Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ausklammern des größten gemeinsamen Teilers kannst du es wiederholen und üben.

  • Benenne den größten gemeinsamen Teiler der beiden Zahlen.

    Tipps

    Eine der beiden Zahlen kann selbst der größte gemeinsame Teiler sein.

    Haben zwei Zahlen keinen ggT (sie sind teilerfremd), dann ist $1$ die einzige natürliche Zahl, die beide Zahlen teilt.

    Lösung
    1. Der größte gemeinsame Teiler von $4$ und $12$ ist $4$, denn $4 \cdot 1 = 4$ und $4\cdot3 = 12$. Dies können wir sehen, wenn wir $4$ und $12$ in ihre Primfaktoren zerlegen. Denn $4=2 \cdot 2$ und $12 = 2 \cdot 2 \cdot 3$. Hier ist ersichtlich, dass $2 \cdot 2$ bei beiden Zahlen als Primfaktoren vorkommen. Somit ist das Produkt davon der ggT. In diesem Fall ist es $4$.
    2. Der größte gemeinsame Teiler von $28$ und $4$ ist ebenfalls $4$, denn $4 \cdot 7 = 28$ und $4 \cdot 1 = 4$. Auch hier können wir zur Überprüfung die Zahlen in ihre Primfaktoren zerlegen. Für $4$ wissen wir nun bereits, dass $4=2\cdot 2$ gilt. Im Gegensatz dazu ist $28=2 \cdot 2 \cdot 7$. Dabei ist wieder zu erkennen, dass $2 \cdot 2$ ebenfalls als Teil des ggT vorkommt.
    3. Der größte gemeinsame Teiler von $4$ und $7$ ist $1$. Es gibt in diesem Fall keine größere natürliche Zahl, die sowohl $4$ als auch $7$ teilen kann.
    4. Um den ggT bei der letzten Aufgabe herauszufinden, muss man sich die Variablen genau anschauen. Der ggT ist hier die Variable, die bei beiden Termen vorkommt. Das ist in dem Beispiel $a$, denn $a$ ist sowohl Faktor von $ab$ und $ac$.
  • Nenne alle Faktoren, die Teil des größten gemeinsamen Teilers des Terms sind.

    Tipps

    Primfaktoren des ggT finden sich in jedem Summanden.

    Lösung
    1. $4x + 28$ - Hier ist $x$ nur Faktor eines Summanden und kann somit nicht Teil des ggT sein. $4$ ist selbst Teiler von $28$ (, denn $4 \cdot 7 = 28$) und somit Teil des ggT $4 = 2 \cdot 2$. Insofern sind $2 \cdot 2$ die einzigen Faktoren, die markiert werden dürfen.
    2. $4x^{2}y^{3} + 12x^{2}y+4x^{2}$ - Auch hier wurden alle Koeffizienten der einzelnen Summanden in ihre Primfaktoren zerlegt. Sowohl bei $4$ als auch bei $12$ ist zu sehen, dass jeweils die Faktoren $2 \cdot 2$ vorkommen. Diese sind somit alle Teil des ggT. Bei den Variablen muss etwas genauer hingeschaut werden. Bei genauerer Betrachtung ist zu sehen, dass $x \cdot x$ bei allein drei Summanden vorkommt und deshalb als Teil des ggT zu markieren ist. $y$ hingegen kommt zwar bei zwei der Summanden vor, allerdings nicht beim dritten Summanden. Deswegen fällt $y$ als Teil des ggT weg. Im Endeffekt sind somit in jedem Summand die Faktoren $2$, $2$, $x$ und $x$ Teil des ggT.
  • Vergleiche den größten gemeinsamen Teiler der Zahlen.

    Tipps

    Die Größe der Zahlenpaare gibt keinen Hinweis auf die Größe des ggT.

    Die hintere Ziffer gibt einen Hinweis auf mögliche Teiler. Ist die hintere Ziffer gerade, sind die Zahlen auf jeden Fall durch $2$ teilbar. Ist die letzte Ziffer eine $5$, dann ist die Zahl auf jeden Fall durch $5$ teilbar. Ist die letzte Ziffer eine $0$, ist die Zahl auf jeden Fall durch $2$, $5$ und $10$ teilbar.

    Überprüfe, ob der größte Teiler der kleineren Zahl des Zahlenpaares auch Teiler der anderen Zahl ist. Wenn nicht, nehme den nächstkleineren Teiler und prüfe erneut. Gehe so schrittweise vor, bis du den ggT beider Zahlen gefunden hast.

    Lösung

    Um Herauszufinden, welcher ggT der kleinste/größte ist, kann es helfen, die Zahlen in ihre Primfaktoren zu zerlegen, um diese dann miteinander zu vergleichen.

    1) An oberster Stelle steht das Zahlenpaar mit dem größten gemeinsamen Teiler. Dies sind die Zahlen $32$ und $48$, denn ihr ggT ist $16$. Keines der anderen Zahlenpaare hat einen größeren ggT. Dazu schauen wir uns die Primfaktoren beider Zahlen an. $32 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ und $48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$. Alle Primfaktoren, die beide Zahlen teilen, sind Teil des ggT. In diesem Fall ist das Produkt dieser Primfaktoren $16 = 2 \cdot 2 \cdot 2 \cdot 2$.

    2) Es folgt das Zahlenpaar $42$ und $70$ mit dem ggT von $14$. Auch hier kann es helfen, sich die Primfaktorzerlegung beider Zahlen anzuschauen. $42= 2 \cdot 3 \cdot 7$ und $70 = 2 \cdot 5 \cdot 7$. Hier sind $2$ und $7$ Primfaktoren beider Zahlen und deren Produkt ist der ggT.

    3) An nächster Stelle kommt das Paar $40$ und $90$. Deren ggT ist die $10$. Wird $40$ in seine Primfaktoren zerlegt, ergibt sich $40 = 2 \cdot 2 \cdot 2 \cdot 5$ und für $90$ ergibt sich $90 = 2 \cdot 3 \cdot 3 \cdot 5$. Gemeinsame Primfaktoren sind $2$ und $5$. Deren Produkt ist $10$ und somit ist das der ggT.

    4) Wieder etwas kleiner ist $8$. Dies ist der ggT von $64$ und $120$, denn $64= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ und $120= 2 \cdot 2 \cdot 2 \cdot 3 \cdot 5$. Dabei wird ersichtlich, dass $8$ der ggT beider Zahlen ist.

    5) Der kleinste ggT ist somit der ggT von $72$ und $100$. Deren größter gemeinsamer Teiler ist $4$ und somit kleiner als bei allen anderen Zahlenpaaren. Hier durfte man sich nicht von Größe der Zahlen täuschen lassen. Man muss einen Blick auf die Primfaktoren der Zahlen werfen. $72= 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$ und $100= 2 \cdot 2 \cdot 5 \cdot 5$. Hier kann man sehen, dass $2 \cdot 2 = 4$ die größte natürliche Zahl ist, die $72$ und $100$ teilt. Somit ist $4$ der ggT beider Zahlen.

  • Ermittle den größten gemeinsamen Teiler.

    Tipps

    Die niedrigste Hochzahl (=Exponent) im Term kann einen Hinweis auf den ggT des gesamten Terms geben.

    Achte darauf, ob die Variablen des ggT bei allen Summanden des Terms vorhanden sind.

    Lösung

    Zum Lösen dieser Aufgabe musste das Augenmerk nur auf die Variablen gelegt werden. Die Koeffizienten der ggT war in allen Fällen immer $8$ und somit nicht relevant.

    $8y^{2}y^{2}$ ist der größte gemeinsame Teiler von $8x^{2}y^{2}+16x^{3}y^{3}$ und ebenfalls von $24x^{4}y^{5}-32y^{2}x^{2}$. In beiden Termen ist der Exponent von $x$ stets mindestens $2$ oder höher. Das gleiche gilt auch für die Exponenten von $y$.

    $8xy$ ist hingegen der ggT von $16xyz+24x^{2}y^{2}$ und von $32y^{2}x+24x^{2}y$. Bei genauerer Betrachtung fällt auf, dass sowohl $x$ als auch $y$ stets in allen Summanden beider Terme vorhanden sind. Dennoch ist der niedrigste Exponent von allen Variablen in beiden Termen $1$ und somit kann der ggT nicht $x^{2}$ bzw. $y^{2}$ oder höher sein.

    Damit bleibt $8x^{3}$ als ggT für die Terme $8x^{5}y^{2}-16x^{3}z$ und $16y^{3}x^{4}-24z^{2}a^{2}x^{3}$ übrig. Hier musste darauf geachtet werden, ob es Terme gibt, in denen $x$ ausschließlich die Variable ist, die in beiden Summanden vorkommt. In den übrigen Termen kam auch $y$ in allen Summanden aller Terme vor. Das ist in diesen Fällen anders. $y$ und $z$ sind zwar auch als Variablen vorhanden, allerdings nicht bei allen Summanden der Terme. Somit ist $8x^{3}$ der ggT der beiden Terme.

  • Nenne die korrekten Aussagen.

    Tipps

    Der ggT von $4$ und $24$ ist $4$.

    Mit Hilfe des Assoziativgesetzes kannst du Klammern in bestimmten Termen geschickt umsetzen, sodass der Term weiterhin denselben Wert hat.

    Lösung

    1) „Mit Hilfe des Distributivgesetzes kannst du den größten gemeinsamen Teiler ausklammern.“ Das ist eine korrekte Aussage. Die Umkehrung des Distributivgesetzes lautet $a \cdot b + a \cdot c = a \cdot (b+c)$. Dabei wird mit der Variable $a$ ebenfalls der ggT ausgeklammert.

    2) „Das Distributivgesetz lautet: $a \cdot (b \cdot c) = (a \cdot b) \cdot c~$“ ist demnach nicht korrekt. Es lautet: $a \cdot (b+c) = a \cdot b + a \cdot c$.

    3) „Der ggT zweier Zahlen ist die kleinste natürliche Zahl, die beide Zahlen teilt.“ ist ebenfalls nicht korrekt, da ggT für größter gemeinsamer Teiler steht. Wie der Name schon verrät ist der ggT zweier Zahlen die größte natürliche Zahl, die beide Zahlen teilt.

    4) „Der ggT von $4$ und $28$ ist $4$.“ stimmt wiederum. Es gibt keine größere natürliche Zahl, die sowohl $4$ als auch $28$ teilt. $4$ ist nämlich selbst der ggT. Dies wird anhand der Primfaktorzerlegung sichtbar, denn $4 = 2 \cdot 2$ und $28 = 2 \cdot 2 \cdot 7$.

  • Ermittle den größten gemeinsamen Teiler der Terme

    Tipps

    Die Koeffizienten in den einzelnen Termen können dir schon einen Hinweis geben, welchen Koeffizient der ggT haben muss.

    Achte darauf, ob alle Variablen in jedem der Summanden innerhalb eines Terms vorhanden sind.

    Lösung
    1. $24x^{3}y^{2}+40x^{2}y+32x^{4}y^{3}$ beinhaltet als Koeffizienten $24$, $40$ und $32$. Der ggT dieser Zahlen ist $8$. Zur Erklärung: $24= 2 \cdot 2 \cdot 2 \cdot 3$ und $32= 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$ und $40 = 2 \cdot 2 \cdot 2 \cdot 5$ mit dem Produkt $8$ als ggT. Insofern können wir alle Lösungen ohne $8$ als Koeffizienten ausschließen. Schauen wir nun auf die Variablen: Der Exponent ist bei jedem $x$ immer mindestens $2$. Somit ist $x^{2}$ ein Faktor des ggT. Der Exponent von $y$ beträgt bei einem der Summanden $1$, bei allen anderen ist er höher. Somit ist der ggT dieses Terms $=~8x^{2}y$.
    2. $24x^{2}y+40xy^{2}+28x^{3}y^{5}$ beinhaltet die Koeffizienten $24$, $40$ und $28$. Deren ggT ist $4$, denn $24= 2 \cdot 2 \cdot 2 \cdot 3$ und $28= 2 \cdot 2 \cdot 7$ und $40 = 2 \cdot 2 \cdot 2 \cdot 5$ mit dem Produkt $4$ als ggT. Bei den Variablen kommen sowohl $x$ als auch $y$ bei allen Summanden vor, jedoch jeweils einmal nur mit dem Exponenten $1$. Insofern ist der ggT $=~ 4xy$.
    3. $24x^{3}y^{2}+32y^{5}x^{3}+40y^{2}x^{4}$ beinhaltet die Koeffizienten $24$, $32$ und $40$. Deren ggT ist wie bei dem obigen Term $8$. Alle anderen Koeffizienten fallen somit wieder raus. Bei diesem Term darf man sich nicht von der Reihenfolge der Variablen verwirren lassen und man muss genau auf die Exponenten achten. Der niedrigste Potenz mit $x$ lautet $x^{3}$, während der niedrigste Exponent bei $y$ die $2$ ist. Somit ist der ggT des Terms $=~8x^{3}y^{2}$.
    4. $24xyz+30x^{2}y^{2}z^{2}+42x^{3}y^{3}$ beinhaltet als Koeffizienten die Zahlen $24$, $30$ und $42$. Deren ggT ist $6$. Auch hier noch einmal zu Verdeutlichung: $24= 2 \cdot 2 \cdot 2 \cdot 3$ und $40= 2 \cdot 3 \cdot 5$ und $42 = 2 \cdot 3 \cdot 7$. Hier taucht mit $z$ erstmals eine weitere Variable im Term auf. Diese ist jedoch nicht in allen Summanden vorhanden und demnach kein Teil des ggT. Schaut man sich den ersten Summanden $24xyz$ an, fällt auf, dass dort gleichzeitig mit $x$ und $y$ die niedrigsten Potenzen des gesamten Terms stehen. Demnach ist der ggT des Terms $6xy$.