Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Ausklammern ganzer Summanden

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 156 Bewertungen
Die Autor*innen
Avatar
Team Digital
Ausklammern ganzer Summanden
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Ausklammern ganzer Summanden Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ausklammern ganzer Summanden kannst du es wiederholen und üben.
  • Bestimme die korrekten Aussagen zum Ausklammern und Ausmultiplizieren von Termen.

    Tipps

    Das Kommutativgesetz gilt nur für die Addition und Multiplikation.

    Eine Multiplikation mit $1$ verändert den Wert einer Zahl nicht.

    Lösung

    Diese Aussagen sind falsch:

    „Beim Ausmultiplizieren addierst du einen Faktor, der vor einer Klammer steht, einzeln zu jedem Summanden der Klammer.“

    • Beim Ausmultiplizieren musst du den Faktor, der vor der Klammer steht mit jedem Summanden der Klammer multiplizieren.
    „Das Kommutativgesetz besagt, dass die Reihenfolge der Faktoren einer Division irrelevant ist.“

    • Das Kommutativgesetz gilt nur für die reine Addition oder reine Multiplikation. Denn nur hier führt eine Änderung der Reihenfolge der Zahlen auf dasselbe Ergebnis.
    Diese Aussagen sind richtig:

    „Beim Ausklammern findest du Faktoren, die in allen Summanden vorkommen und schreibst diese vor eine Klammer.“

    • Manchmal musst du dafür die Summanden in ihre Primfaktoren aufteilen.
    „Möchtest du einen ganzen Summanden ausklammern, ist es hilfreich, diesen Summanden zuerst mit $1$ zu multiplizieren.“

    • Eine Multiplikation mit $1$ verändert den Wert einer Zahl nicht. Allerdings ist dieser Faktor später hilfreich, wenn du den ganzen Faktor ausklammern möchtest.
    „Um zu überprüfen, ob du beim Ausklammern einen Fehler gemacht hast, ist es hilfreich, die Probe durchzuführen.“

    • In der Mathematik ist "rückwärts rechnen" immer eine gute Methode, um Rechnungen zu überprüfen.
  • Beschreibe das Vorgehen beim Ausklammern und Ausmultiplizieren ganzer Summanden.

    Tipps

    Nach dem Aufteilen in Primfaktoren fällt es leichter, gemeinsame Faktoren der Summanden zu identifizieren.

    Bei einer Probe rechnen wir rückwärts. Erhalten wir als Ergebnis den Term, mit dem wir angefangen haben, wurde mit großer Wahrscheinlichkeit richtig gerechnet.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „(...) In diesem Term können wir zunächst die Summanden in einzelne Faktoren zerlegen. Dann erhalten wir:

    $3 \cdot x+3 \cdot 3 \cdot x \cdot y$“

    • Nach dem Aufteilen in Primfaktoren fällt es leichter gemeinsame Faktoren der Summanden zu identifizieren.
    „Anschließend multiplizieren wir den ersten Summanden mit $1$. So erhalten wir:

    $3 \cdot x \cdot 1+3 \cdot 3 \cdot x \cdot y$“

    • Hier kommt der Faktor $3x$ in beiden Summanden vor. Allerdings entspricht das dem ganzen ersten Summanden. Deshalb multiplizieren wir diesen hier mit $1$. Dadurch verändert sich der Wert des Summanden nicht, es ist jedoch hilfreich für das Ausklammern.
    „Jetzt können wir die Faktoren, die in allen Summanden vorkommen, ausklammern. So erhalten wir:

    $3x \cdot (1+3 \cdot y)$“

    • Nach dem Ausklammern bleibt jetzt eine $1$ in der Klammer zurück.
    „Zum Schluss führen wir die Probe durch:

    $3x \cdot (1+3y)=3x \cdot 1+3x\cdot 3y=3x+9xy $“

    • Bei einer Probe rechnen wir rückwärts. Wir multiplizieren den Term also aus. Erhalten wir als Ergebnis den Term, mit dem wir angefangen haben, wurde mit großer Wahrscheinlichkeit richtig gerechnet.
  • Ermittle, welche Terme gleich sind.

    Tipps

    Du kannst die Lösungen auf zwei verschiedene Arten bestimmen:

    1. Du zerlegst die Summanden aus dem linken Term in Primfaktoren und suchst dann gemeinsame Faktoren.
    2. Du klammerst die Terme auf der rechten Seite der Gleichungen aus.

    Dann erhältst du zum Beispiel:

    $2x(13yx+1)= 2x \cdot 13xy + 2x \cdot 1=16x^2y+2x $

    Lösung

    Du kannst die Lösungen bestimmen, indem du die rechte Seite der Gleichungen ausklammerst und anschließend mit der linken Seite vergleichst. So erhältst du:

    • $3x+12xy = \color{#669900}{3x} \cdot 1 + \color{#669900}{3x } \cdot 4y= \color{#669900}{3x}(1+4y)$
    Probe durch Ausmultiplizieren:

    • $3x(1+4y) = 3x \cdot 1 + 3x \cdot 4y= 3x+12xy$
    • $4x+12xy = \color{#669900}{4x} \cdot 1 + \color{#669900}{4x} \cdot 3y= \color{#669900}{4x}(1+3y)$
    • $ 4x-16xy= \color{#669900}{4x} \cdot 1 - \color{#669900}{4x} \cdot 4y= \color{#669900}{4x}(1-4y)$
    • $18x-6xy = \color{#669900}{3x} \cdot 6 + \color{#669900}{3x} \cdot (-2y)=\color{#669900}{3x}(6-2y)$
    • Theoretisch könnte dieser Term auch wie folgt ausgeklammert werden:
    $18x-6xy = 6x \cdot 3 + 6x \cdot (-y) = 6x ( 3- y)$
  • Leite die umgeformten Terme her.

    Tipps

    Du kannst die Terme umformen, indem du sie zuerst in ihre Faktoren aufspaltest und anschließend die Faktoren, die in allen Summanden vorkommen, vor eine Klammer schreibst.

    Hast du einen negativen Summanden, möchtest aber den positiven Wert ausklammern, kannst du das Minuszeichen in der Klammer lassen (wie hier bei $-5y= 5y \cdot (-1)$).

    Lösung

    Du kannst die Terme umformen, indem du sie zuerst in ihre Faktoren aufspaltest und anschließend die Faktoren, die in allen Summanden vorkommen, vor eine Klammer schreibst. So erhältst du:

    • $15x+3x-6xy=3x \cdot 5 +3x \cdot 1 + 3x \cdot (-2y) = 3x(5+1-2y)$
    Hast du einen negativen Summanden, möchtest aber den positiven Wert ausklammern, kannst du das Minuszeichen in der Klammer lassen (wie hier bei $-5y= 5y \cdot (-1)$)

    • $10xy-5y+30yx^2=5y \cdot 2x + 5y \cdot (-1) + 5y \cdot 6x^2=5y(2x-1+6x^2)$
    • $6x-12xy-6=6 \cdot x + 6 \cdot (-2y) + 6 \cdot (-1)= 6(x-2y-1)$
    • $18x-36y+6=6 \cdot 3x + 6 \cdot (-6y) + 6 \cdot 1=6(3x-6y+1)$
    • $6xy-15x+21x^2=3x \cdot 2y + 3x \cdot (-5) + 3x \cdot 7x= 3x(2y-5+7x)$
  • Ergänze die Rechnung.

    Tipps

    Du solltest den mittleren Term zuerst mit $1$ multiplizieren, bevor du ausklammerst.

    Beim Ausklammern darfst du Differenzen genauso behandeln wie Summen.

    Lösung

    So sieht die vollständige Rechnung aus:

    $\begin{array}{ll} &~~~~\frac{1}{3} \cdot a \cdot b + \frac{1}{3} \cdot a -\frac{4}{3} \cdot a\\ &=\frac{1}{3} \cdot a \cdot b + \frac{1}{3} \cdot a \cdot 1 -\frac{4}{3} \cdot a\\ &=\frac{1}{3} \cdot a \cdot ( b +1 -4)\\ \end{array}$

    Den mittleren Summanden haben wir zuerst mit $1$ multipliziert, da dieser Summand komplett ausgeklammert wird.

    Die $1$ taucht am Ende in der Klammer auf.

  • Ermittle, welche Terme äquivalent sind.

    Tipps

    Du kannst auch einen Faktor ausklammern, der nicht vorhanden ist. Möchtest du das tun, musst du in der Klammer durch denselben Faktor teilen, der ausgeklammert wird. Der Wert verändert sich dabei nicht, denn $c=2 \cdot \frac{c}{2}$.

    Hier können wir den Faktor $2$ ausklammern, da dies durch die Division durch $2$ kompensiert wurde.

    Auch Brüche kannst du ganz normal ausklammern, indem du sie in Faktoren aufteilst. Zum Beispiel:

    $ \frac{5}{3}x + \frac{2}{3} = \frac{1}{3} \cdot 5x + \frac{1}{3} \cdot 2 = \frac{1}{3}(5x+2)$.

    Lösung

    Diese Rechnungen sind falsch:

    „$12ab-16bc-8b=4b(3a-4c-1)$“

    • Hier wurde nicht der komplette Summand ausgeklammert. Du kannst das Ausklammern so korrekt durchführen:
    $12ab-16bc-8b=4b \cdot 3a + 4b \cdot (-4c) -2 \cdot 4b = 4b(3a-4c-2)$

    „$\frac{3}{2} x -\frac{1}{2} x^2 + \frac{5}{2} xy= \frac{1}{2} x (2+5y)$“

    • Hier wurde nicht korrekt ausgeklammert. Auch Brüche kannst du ganz normal ausklammern, indem du sie in Faktoren aufteilst. So kannst du die Rechnung richtig durchführen:
    $\frac{3}{2} x -\frac{1}{2} x^2 + \frac{5}{2} xy= \frac{1}{2} x \cdot 3 + \frac{1}{2} x \cdot(- x) + \frac{1}{2} x \cdot 5y = \frac{1}{2} x (3-x+5y)$

    Diese Rechnungen wurden korrekt durchgeführt:

    „$2a+6b-c+2=2 \cdot a+ 2 \cdot 3b + 2 \cdot (- \frac{c}{2}) + 2 \cdot 1= 2(a+3b-\frac{c}{2}+1)$“

    • Beachte hier, dass aus dem Faktor $c$ eine $2$ ausgeklammert wurde, die nicht vorhanden ist. Möchtest du das tun, musst du in der Klammer durch denselben Faktor teilen, der ausgeklammert wird. Der Wert verändert sich dabei nicht, denn $c=2 \cdot \frac{c}{2}$
    „$10ab-5ab+5a=5ab+5a= 5a \cdot b + 5a \cdot 1= 5a(b+1)$"

    • Hier kannst du den linken Term zuerst zusammenfassen, bevor du ihn vereinfachst. Dann kannst du $5a$ als ganzen Summanden ausklammern.
    „$13c+2c-5bc+10ac=15c-5bc+10ac=5c \cdot 3 + 5c \cdot (-b)+ 5c \cdot 2a=5c(3-b+2a)$“

    • Hier wird zwar kein ganzer Summand ausgeklammert, nach Vereinfachung des linken Terms kannst du aber $5c$ ausklammern.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.374

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.944

Lernvideos

37.093

Übungen

34.339

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden