30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Ungleichungen graphisch lösen 05:31 min

Textversion des Videos

Transkript Ungleichungen graphisch lösen

In letzter Zeit ist meine Tante Susi sooo schusselig! Zu meinem Geburtstag hat sie 15 mit Blattgold verzierte Kekse gebacken. Und sie hat aus einem ganzen Berg Zitronen 10 Gläser Limonade gemacht. Doch dann ist ihr eingefallen, dass ich erst nächsten Monat Geburtstag habe! Jetzt möchte sie die Leckereien verkaufen, um zumindest die 50 Euro für die Zutaten wieder herein zu bekommen. Doch welche Preise sollte sie verlangen, damit die Kosten gedeckt sind? Komm, wir helfen ihr! Zuerst stellen wir eine lineare Ungleichung in der Normalform auf und zeichnen einen Graphen, um die Lösungsmenge zu bestimmen. Fassen wir zusammen: Tante Susi will 15 Kekse und 10 Gläser Limonade verkaufen. Sie möchte mindestens 50 Euro einnehmen, also nutzen wir eine Ungleichung mit einem Größer-gleich-Zeichen. 15 Kekse mal ein unbekannter Preis x plus 10 Gläser Limo mal ein unbekannter Preis y ist größer-gleich 50 Euro. Für die Normalform müssen wir die Terme umstellen. Mit Hilfe von Äquivalenzumformungen bringen wir die 15x auf die andere Seite der Ungleichung. Dann lösen wir nach y auf, indem wir durch 10 teilen. Müssen wir das Relationszeichen umdrehen? Nein, denn wir teilen durch eine positive Zahl. Denk immer daran: Das Relationszeichen muss bei Multiplikation oder Division von negativen Zahlen umgedreht werden. Die Ungleichung in Normalform lautet also: y ist größer-gleich -1,5x plus 5. Okay, wir sind startklar! In der Normalform können wir die Ungleichung leicht zeichnen. Der y-Achsenabschnitt ist 5 und die Steigung ist -1,5. Die Gerade zeigt die Lösungen für "ist gleich". Aber wie stellen wir "größer als" dar? Alle Wertepaare oberhalb der Geraden zeigen Lösungen, die größer sind als unsere Gleichung. Schraffieren wir diesen Bereich. Lass uns das Ergebnis überprüfen. Such dir irgendeinen Punkt des Graphen aus. Wie wär's mit (1|3)? Dieser Punkt liegt unterhalb der Geraden. Bekommt Tante Susi 50 Euro, wenn sie für die 15 Kekse je 1 Euro und für die 10 Gläser Limonade je 3 Euro verlangt? 15 mal 1 plus 10 mal 3 ist gleich 45. Nein, so kommt Tante Susi nicht zu mindestens 50 Euro. Kein Wunder, denn der Punkt (1|3) liegt außerhalb des schraffierten Bereichs. Jeder Punkt auf der Geraden oder im schraffierten Bereich zeigt Tante Susi eine Preiskombination, mit der sie 50 Euro oder mehr verdienen kann – wenn sie alle Leckereien verkauft. Schauen wir uns ein paar andere Ungleichungen und ihre Graphen an. Für y kleiner-gleich x plus 2 ist der schraffierte Bereich unterhalb der durchgezogenen Geraden. Alle Wertepaare auf und unterhalb der Geraden gehören zur Lösungsmenge. Für y größer als -1/2x plus 5 nutzen wir eine gestrichelte Gerade, da die Wertepaare auf der Geraden nicht zur Lösungsmenge gehören, sondern nur diejenigen oberhalb der Geraden. Für y kleiner -x plus 4 müssen wir auch eine gestrichelte Gerade benutzen. Dieses Mal gehören aber die Wertepaare unterhalb der Geraden zur Lösungsmenge. Fassen wir noch mal zusammen: Bei y größer-gleich ist die Gerade durchgezogen und die Wertepaare auf und über der Geraden lösen die Ungleichung. Bei y kleiner-gleich ist die Gerade auch durchgezogen, aber die Wertepaare auf und unterhalb der Geraden sind Lösungen. Bei y größer als stricheln wir die Gerade und nur die Wertepaare oberhalb der Geraden gehören zur Lösungsmenge. Bei y kleiner als ist die Gerade ebenfalls gestrichelt, aber alle Wertepaare darunter gehören zur Lösungsmenge. Hier noch mal der Lösungsweg: Stelle deine Ungleichung in der Normalform auf. Drehe beim Umstellen, falls nötig, das Relationszeichen. Zeichne die passende Gerade, durchgezogen oder gestrichelt. Bestimme, ob die Lösungsmenge oberhalb oder unterhalb der Geraden zu finden ist. Prüfe mit einem Punkt dein Ergebnis. Meine liebe Tante Susi hat alle Kekse und die ganze Limonade verkauft. Sie ist begeistert. Aber Moment mal… Kaum zu glauben! Sie selbst hat heute Geburtstag! Wie konnte sie DAS nur vergessen?

Ungleichungen graphisch lösen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Ungleichungen graphisch lösen kannst du es wiederholen und üben.

  • Gib die gesuchte Ungleichung in Normalform an.

    Tipps

    Die Einnahmen durch eine Anzahl von Verkaufsartikeln berechnest du wie folgt:

    Anzahl der verkauften Artikel $\cdot$ Preis pro Stück $=$ Einnahmen

    Ein Beispiel:

    Um von der Ungleichung ${-4x}+ 2y\leq 10$ zu der Normalform zu gelangen, stellst du sie so um, dass das $y$ auf einer Seite isoliert steht:

    $ \begin{array}{llll} {-4x}+2y & \leq & 10 & \vert {+4x} \\ 2y & \leq & 4x + 10 & \vert {:2}\\ y & \leq & (4x + 10){:2} & \\ y & \leq & 2x + 5 & \end{array} $

    Da du dabei nur durch eine positive Zahl dividierst, dreht sich das Ungleichheitszeichen nicht um.

    Lösung

    Aus der Situation von Tante Susi sind uns folgende Angaben bekannt:

    • $15$ gebackene Kekse
    • $10$ Gläser Limonade
    • $50$ € Kosten für die Zutaten
    Zunächst stellen wir eine Ungleichung auf, in welcher die Einnahmen durch die Kekse und die Limonade mindestens $50$ € entsprechen. Dabei erhalten wir die folgende Ungleichung.

    $\underbrace{15\cdot x}_{\substack{\text{Einnahmen durch Kekse}}}+\underbrace{10\cdot y}_{\substack{\text{Einnahmen durch Limonade}}}\geq\underbrace{50}_{\substack{\text{Kosten der Zutaten}}}$

    Diese Ungleichung stellen wir mittels Äquivalenzumformungen so um, dass $y$ auf einer Seite alleine steht. Diese Form der Ungleichung heißt Normalform:

    $ \begin{array}{llll} 15x+10y & \geq & 50 & \vert -15x \\ 10y & \geq & -15x + 50 & \vert :10\\ y & \geq & -1,5x + 5 & \end{array} $

    Zuletzt testen wir, wie viel Tante Susi einnehmen würde, wenn sie für $15$ Kekse je $1$ € und für $10$ Gläser Limonade je $3$ € verlangt. Wir setzen daher für den Preis für einen Keks $x=1$ und für den Preis für ein Glas Limonade $y=3$ in unsere Ungleichung ein. Dabei verwenden wir die ursprüngliche Form der Ungleichung.

    $\begin{array}{llll} 15\cdot 1 +10\cdot 3& \geq &50 \\ 15+30 &\geq &50 \\ 45 &\geq& 50 & \text{Diese Aussage ist falsch!} \end{array} $

    Die Aussage dieser Ungleichung ist falsch. Daher wissen wir, dass Tante Susi höhere Preise verlangen muss, um das Geld für die Zutaten herauszubekommen.

    Alternativ:
    Wir können den Punkt $(1\vert 3)$ auch in die Normalform unserer Ungleichung einsetzen:

    $ \begin{array}{lll} 3 & \geq & -1,5\cdot 1+5 \\ 3 & \geq & 3,5 & \text{Diese Aussage ist falsch!} \end{array} $

    Da die resultierende Aussage falsch ist, liegt der Punkt $(1\vert 3)$ liegt nicht in der Lösungsmenge unserer Ungleichung. Somit wird auch auf diesem Weg klar, dass die Preise für Kekse und Limonaden zu gering ist und Tante Susi weniger als $50$ € verdienen würde.

  • Beschreibe das allgemeine Vorgehen bei der graphischen Darstellung der Lösungsmenge einer Ungleichung.

    Tipps

    Die Normalform einer Ungleichung mit zwei Variablen ist diejenige Form, in welcher die Ungleichung aufgelöst nach der abhängigen Variablen (meist als $y$-Variable bezeichnet) vorliegt. Diese Form der Ungleichung erinnert an eine Gerade.

    Durch Umformungen einer Ungleichung kann sich das Ungleichheitszeichen umdrehen. Dies geschieht jedes Mal, wenn du auf beiden Seiten

    • durch eine negative Zahl dividierst oder
    • mit einer negativen Zahl multiplizierst.

    Ein Beispiel:

    Um die Ungleichung ${-4x}+ 2y\leq 10$ graphisch darzustellen, musst du sie erst in die Normalform $y\leq 2x + 5$ bringen. Dabei dreht sich das Ungleichheitszeichen nicht um.

    Wegen des „$=$“ im „$\leq$“ zeichnest du die zugehörige Gerade als durchgezogene Linie.
    Wegen des „$y\le$...“ in $y\leq 2x + 5$ gehören alle Punkte unterhalb der Geraden zur Lösungsmenge der Ungleichung.

    Lösung

    Wenn du die Lösungsmenge einer Ungleichung graphisch darstellen möchtest, gehst du wie folgt vor:

    1. Bringe die Ungleichung in die Normalform. Dafür nimmst du Äquivalenzumformungen vor, sodass die abhängige Variable auf einer Seite isoliert steht. Üblicherweise wird die abhängige Variable als $y$ bezeichnet.
    2. Drehe bei der Umformung deiner Ungleichung ggf. das Relationszeichen um. Darauf musst du bei jeder Multiplikation sowie Division mit einer negativen Zahl achten.
    3. Liegt deine Ungleichung in der Normalform vor, erinnert sie an eine Geradengleichung mit Steigung $m$ und $y$-Achsenschnitt $b$. Zeichne diese Gerade in ein Koordinatensystem.
    4. Achte dabei auf das Relationszeichen: Zeichne die Gerade als durchgezogene oder gestrichelte Linie und
    5. markiere den Bereich oberhalb oder unterhalb der Geraden nach folgenden Regeln:
    $\begin{array}{l|l} \text{Normalform} & \text{Graph der L}\ddot{\text{o}}\text{sungsmenge} \\ \hline y\gt mx+b & \text{gestrichelte Gerade; Punkte oberhalb der Geraden sind L}\ddot{\text{o}}\text{sungen} \\ y\geq mx+b& \text{durchgezogene Gerade; Punkte auf und oberhalb der Geraden sind L}\ddot{\text{o}}\text{sungen} \\ y\lt mx +b & \text{gestrichelte Gerade; Punkte unterhalb der Geraden sind L}\ddot{\text{o}}\text{sungen} \\ y\leq mx+b & \text{durchgezogene Gerade; Punkte auf und unterhalb der Geraden sind L}\ddot{\text{o}}\text{sungen} \end{array}$

  • Skizziere die Lösungsmengen der gegebenen Ungleichungen.

    Tipps

    Folgendes gilt für die Relationszeichen:

    $y>x\ \rightarrow$ „$y$ ist größer als $x$“

    $y\geq x\ \rightarrow$ „$y$ ist größer als $x$ oder gleich $x$“

    $y<x\ \rightarrow$ „$y$ ist kleiner als $x$“

    $y\leq x\ \rightarrow$ „$y$ ist kleiner als $x$ oder gleich $x$“

    Folgende Regeln gelten für die Relationszeichen bei der graphischen Darstellung der Lösungsmenge im Koordinatensystem:

    $y>x\ \rightarrow$ gestrichelte Gerade; Punkte oberhalb der Geraden sind Lösungen

    $y\geq x\ \rightarrow$ durchgezogene Gerade; Punkte auf und oberhalb der Geraden sind Lösungen

    $y<x\ \rightarrow$ gestrichelte Gerade; Punkte unterhalb der Geraden sind Lösungen

    $y\leq x\ \rightarrow$ durchgezogene Gerade; Punkte auf und unterhalb der Geraden sind Lösungen

    Lösung

    Das Vorgehen in dieser Aufgabe wird im Folgenden am ersten Beispiel verdeutlicht.

    Gegeben ist folgende Ungleichung in Normalform:

    $y\leq x+2$

    Da $y$ kleiner gleich $x+2$ ist, zeichnen wir die Gerade $y=x+2$ mit einer durchgezogenen Linie in unser Koordinatensystem ein. Die Linie ist durchgezogen, da auch alle diejenigen Werte $y$, welche auf der Geraden liegen, Teil unserer Lösungsmenge sind. Zudem schraffieren wir den Bereich unterhalb der Geraden $y=x+2$. Denn auch alle diejenigen Werte $y$, die kleiner sind als $x+2$, liegen in unserer Lösungsmenge.

    Auf diese Weise erhalten wir die hier abgebildete graphische Darstellung der Lösungsmenge.

  • Bestimme die Ungleichungen zu den abgebildeten graphischen Lösungsmengen.

    Tipps

    Bringe die gegebenen Ungleichungen zunächst in die Normalform. Bei der Normalform steht das $y$ alleine auf einer Seite der Ungleichung.

    Beachte bei deinen Umformungen das Ungleichheitszeichen. Dieses musst du umdrehen, sobald du eine Multiplikation oder Division mit einer negativen Zahl durchführst.

    Folgende Regeln gelten für die Relationszeichen bei der graphischen Darstellung der Lösungsmenge im Koordinatensystem:

    $y>x\ \rightarrow$ gestrichelte Gerade; Punkte oberhalb der Geraden sind Lösungen

    $y\geq x\ \rightarrow$ durchgezogene Gerade; Punkte auf und oberhalb der Geraden sind Lösungen

    $y<x\ \rightarrow$ gestrichelte Gerade; Punkte unterhalb der Geraden sind Lösungen

    $y\leq x\ \rightarrow$ durchgezogene Gerade; Punkte auf und unterhalb der Geraden sind Lösungen

    Lösung

    Die gegebenen Ungleichungen lauten in Normalform wie folgt:

    $ \begin{array}{lll} 3y-15\leq 6x & \Leftrightarrow & y\leq 2x+5 \\ \\ 5x-5y\geq -20 & \Leftrightarrow & y\leq x+4 \\ \\ -\frac{7}{2}x+5> -y & \Leftrightarrow & y>\frac{7}{2}x-5 \\ \\ -4x+5> -y & \Leftrightarrow & y>4x-5 \\ \\ y\geq 2x+5 & \Leftrightarrow & y\geq 2x+5 \\ \\ 2y-6x< -10 & \Leftrightarrow & y<3x-5 \end{array} $

    Erster Graph:

    Die hier abgebildete graphische Lösung entspricht der ersten Abbildung aus der Aufgabe. Hier dargestellt ist eine durchgezogene Gerade zu der Geradengleichung $y=2x+5$. Zudem ist der untere Bereich der Geraden markiert. Es handelt sich also um die Lösungsmenge der Ungleichung $3y-15\leq 6x ~ \Leftrightarrow ~ y\leq 2x+5$.

    Zweiter Graph:

    In dieser Abbildung sehen wir die durchgezogene Gerade zu der Funktionsgleichung $y=x+4$. Wieder ist der untere Bereich der Geraden gekennzeichnet. Demnach handelt es sich um die graphische Lösung der Ungleichung $5x-5y\geq -20 ~ \Leftrightarrow ~ y\leq x+4$.

    Dritter Graph:

    Die hier dargestellte Gerade ist gestrichelt und wird durch die Funktionsgleichung $y=\frac{7}{2}x-5$ beschrieben. Diesmal ist der obere Bereich der Geraden markiert. Also sehen wir hier die graphische Lösung der Ungleichung $-\frac{7}{2}x+5> -y ~ \Leftrightarrow ~ y>\frac{7}{2}x-5$.

    Vierter Graph:

    Wieder liegt eine gestrichelte Gerade vor. Es handelt sich hierbei um die Gerade zu der Funktionsgleichung $y=3x-5$. Der markierte Bereich befindet sich unterhalb der Geraden, sodass dieser die Lösungsmenge der Ungleichung $2y-6x< -10 ~ \Leftrightarrow ~ y<3x-5$ darstellt.

  • Ermittle die graphische Lösungsmenge der gegebenen Ungleichung.

    Tipps

    Das Ungleichheitszeichen dreht sich um, sobald auf beiden Seiten der Ungleichung mit einer negativen Zahl multipliziert oder dividiert wird.

    Schau dir folgendes Beispiel an:

    $y>x+2$

    1. Die Ungleichung ist bereits in ihrer Normalform.
    2. Für die Gerade $y=x+2$ wird eine gestrichelte Linie gezeichnet.
    3. Der Bereich über der Geraden wird schraffiert.
    Lösung

    Wir möchten die Lösungsmenge der Ungleichung $6x-3y\leq 18$ graphisch in einem Koordinatensystem darstellen. Hierfür muss die gegebene Ungleichung zunächst in die Normalform gebracht werden. Also stellen wir die Ungleichung so um, dass die $y$-Variable auf einer Seite der Ungleichung isoliert ist:

    $ \begin{array}{llll} 6x-3y & \leq & 18 & \vert -6x \\ -3y & \leq & -6x+18 & \vert :(-3) \\ y & \geq & 2x - 6 & \end{array} $

    Das Ungleichheitszeichen dreht sich im letzten Schritt um, da beide Seiten der Ungleichung durch eine negative Zahl geteilt werden.

    Wegen des „$=$“ in der Ungleichung $y \geq 2x - 6$ wird die Gerade $y=2x-6$ als durchgezogene Linie in ein Koordinatensystem gezeichnet. Alle Punkte, die auf der Geraden $y=2x-6$ liegen, sind Lösung der Ungleichung.

    Wegen des „$y\gt$...“ in der Ungleichung $y \geq 2x - 6$ wird außerdem der Bereich oberhalb der Geraden $y=2x-6$ schraffiert. Denn alle Werte in diesem Bereich sind ebenfalls Lösung der gegebenen Ungleichung.

  • Ordne den gegebenen Ungleichungen die zugehörige Normalform zu.

    Tipps

    Die Ungleichungen in der unteren Zeile stehen alle in der Normalform. Das heißt, sie liegen nach $y$ aufgelöst vor.

    Um zu sehen, welche Ungleichungen zusammengehören, musst du als Erstes auch die oberen Ungleichungen in ihre Normalform bringen.

    Möchtest du eine Ungleichung in ihre Normalform bringen, musst du sie mittels Rechenoperationen auf beiden Seiten umstellen.

    Achtung! Bei der Multiplikation sowie Division mit einer negativen Zahl wird das Ungleichheitszeichen umgedreht.

    Die Umformung einer Ungleichung in ihre Normalform, bei der das Ungleichheitszeichen durch Division mit einer negativen Zahl auf beiden Seiten umgedreht wird.

    Hier siehst du die Umformung einer anderen Ungleichung in ihre Normalform. Dabei dreht sich das Ungleichheitszeichen durch Division mit einer positiven Zahl auf beiden Seiten nicht um.

    Lösung

    Es sind vier Ungleichungen gegeben, welche in ihre Normalform gebracht werden sollen. Im Folgenden wird die ausführliche Umstellung am ersten Beispiel gezeigt und die Lösung der anderen drei Beispiele angegeben.

    Beispiel 1: $~ 7,5x-5y\leq 15$

    $ \begin{array}{llll} 7,5x-5y & \leq & 15 & \vert -7,5x \\ -5y & \leq & -7,5x+15 & \vert :(-5) \\ y & \geq & 1,5x-3 \end{array} $

    Da im letzten Schritt durch eine negative Zahl dividiert wird, muss das Ungleichheitszeichen umgedreht werden.

    Beispiel 2: $~ -15x+10y\leq -30$

    $y\leq 1,5x-3$

    Beispiel 3: $~ 3x-2y<6$

    $y>1,5x-3$

    Beispiel 4: $~ -6x+4y<-12$

    $y<1,5x-3$