Gleichungen und Ungleichungen
Entdecke die Welt der Relationszeichen! Lerne, wie Gleichheits- und Ungleichheitszeichen mathematische Ausdrücke vergleichen. Interessiert? Tauche ein und erfahre mehr!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Grundlagen zum Thema Gleichungen und Ungleichungen
Gleichungen und Ungleichungen – Mathe
Um verschiedene Zahlen miteinander zu vergleichen, können Gleichungen oder Ungleichungen helfen. Gleichungen und Ungleichungen bestehen aus mathematischen Ausdrücken, die durch ein besonderes Zeichen verbunden sind. Weil man dabei Zahlen zueinander in Relation setzt, nennt man dieses Zeichen in der Mathematik Relationszeichen.
Was ist ein Relationszeichen? – Definition
Relationszeichen werden oft auch Vergleichszeichen genannt. Das sind mathematische Zeichen, die für die Darstellung der Größenverhältnisse zweier Zahlen oder Terme benutzt werden. Im Folgenden schauen wir uns ein paar Relationszeichen genauer an.
Relationszeichen bei Gleichungen
Das bekannteste Relationszeichen ist das Gleichheitszeichen. Dieses besagt, dass die beiden mathematischen Ausdrücke, die links und rechts von dem Gleichheitszeichen stehen, denselben Wert haben. In diesen Fällen handelt es sich um eine Gleichung.
Beispiele:
oder auch
.
Wenn nun die Ausdrücke auf den beiden Seiten verschiedene Werte haben, handelt es sich nicht mehr um eine Gleichung, sondern um eine Ungleichung. Das Gleichheitszeichen ist in diesem Fall nicht mehr das geeignete Relationszeichen.
Relationszeichen bei Ungleichungen
Bei einer Ungleichung können verschiedene Relationszeichen Verwendung finden. Welche das sind, schauen wir uns nun an.
Kleiner als:
Das Kleiner-als-Zeichen wird verwendet, wenn auf der linken Seite der Ungleichung ein kleinerer Wert steht als auf der rechten Seite, also zum Beispiel:
Man liest: ist kleiner als .
Größer als:
Das Größer-als-Zeichen wird verwendet, wenn auf der linken Seite der Ungleichung ein größerer Wert steht als auf der rechten Seite, also zum Beispiel:
Man liest: ist größer als .
Kleiner/gleich:
Das Kleiner-gleich-Zeichen ist eine Kombination aus dem Gleichheitszeichen und dem Kleiner-als-Zeichen. Es bedeutet, dass der Ausdruck auf der linken Seite der Ungleichung kleiner als oder genauso groß wie der Ausdruck auf der rechten Seite der Ungleichung ist. Man verwendet dieses Zeichen oft, wenn man eine Aussage für mehrere zulässige Werte zusammenfassen möchte. Zum Beispiel ist die Ungleichung
richtig für alle Werte von , die kleiner oder gleich sind.
Kannst du dir nun schon denken, was das Relationszeichen bedeutet?
Größer/gleich:
Genau, es bedeutet, dass der mathematische Ausdruck auf der linken Seite der Ungleichung größer als oder genauso groß ist wie der Ausdruck auf der rechten Seite der Ungleichung. Zum Beispiel ist die Ungleichung
richtig für alle Werte von , die größer oder gleich sind.
Relationszeichen – Beispiele
Nun haben wir gesehen, welche Relationszeichen es gibt, und fragen uns, wann man die verschiedenen Relationszeichen außerhalb des Matheunterrichts verwendet.
Wenn sich zum Beispiel ein Fischer an bestimmte Fanggrenzen halten muss, dann können wir die gesetzliche Vorgabe für die täglich gefangene Fischmenge folgendermaßen als Ungleichung formulieren:
Das heißt, dass der Fischer nur eine Menge von oder weniger pro Tag fangen darf. Damit wären zum Beispiel als täglicher Fang erlaubt, aber auch genau wären in Ordnung. Wenn der Fang dagegen die Ungleichung verletzt, zum Beispiel mit einer Menge von , dann verstößt der Fischer gegen die gesetzliche Vorgabe und muss mit einer Strafe rechnen.
Gleichungen und Ungleichungen – Zusammenfassung
Wir haben nun verschiedene Relationszeichen kennengelernt, mit denen wir Zahlen vergleichen können. Hier fassen wir diese noch einmal zusammen:
Zeichen | Bedeutung | Beispiel |
---|---|---|
gleich | ||
größer als | ||
größer/gleich | und auch | |
kleiner als | ||
kleiner/gleich | und auch |
Sind zwei mathematische Ausdrücke mit dem Gleichheitszeichen verbunden, dann sprechen wir von einer Gleichung. Sind zwei Ausdrücke mit einem der anderen Relationszeichen verknüpft, dann liegt eine Ungleichung vor.
Zusätzlich zum Text und dem Video findest du hier auf der Seite noch Arbeitsblätter und Übungen zum Thema Gleichungen und Ungleichungen. Dort kannst du dein Wissen gleich testen.
Transkript Gleichungen und Ungleichungen
Die Angelsaison hat begonnen. Das hier ist Hauke. Er möchte die Fischpopulationen im Meer vor der Überfischung retten. Haukes Bruder Knut hingegen lebt vom Fischfang, also will er so viele Fische wie möglich fangen. Dabei macht er sich nicht mal die Mühe, die Vorschriften zu lesen. Damit Hauke seinem Bruder die Gesetzeslage klarmachen kann, muss er Gleichungen und Ungleichungen kennen. Die Fischereivorschriften besagen, dass jeder Fischer genau 999 Kilogramm Fisch pro Monat fischen darf. Schauen wir also, wie viel Knut in jedem der letzten drei Monate gefangen hat. Für die Fischmenge in Kilogramm nutzen wir die Variable 'f'. Im ersten Monat hat Knut 999 Kilogramm Fisch gefangen. Mit welchem Symbol können wir das Größenverhältnis zwischen der Menge, die Knut gefangen hat, und der Menge, die die Vorschriften erlauben, darstellen? Aus all den Zeichen und Symbolen, die uns zur Verfügung stehen, sollten wir das Gleichheitszeichen wählen. Zahlen, die links und rechts eines Gleichheitszeichens stehen, haben denselben Wert. Im zweiten Monat hat Knut 800 Kilogramm gefangen. Mit welchem Symbol können wir das Größenverhältnis zwischen 800 und 999 darstellen? Wir wissen, dass 800 ungleich 999 ist. Es handelt sich also nicht mehr um eine Gleichung, sondern um eine Ungleichung. Wir müssen also ein anderes Zeichen benutzen, um die Zahlen zu vergleichen. Das Zeichen, das wir nutzen, nennt sich Kleiner-als-Zeichen, da die kleinere der beiden Zahlen zuerst steht. Man liest das so: 800 ist kleiner als 999. Im dritten Monat hat Knut ein KLEIN WENIG mehr als 999 Kilogramm gefangen 1250 Kilogramm, um genau zu sein. Wie stellen wir das Größenverhältnis zwischen Knuts Fang im dritten Monat und der erlaubten Fangmenge von 999 Kilogramm dar? Die Zahl auf der linken Seite ist größer als die auf der rechten, deswegen können wir das Verhältnis mit dem Größer-als-Zeichen darstellen. Das sieht aus wie das Kleiner-als-Zeichen, nur umgedreht. Nicht gut für Knut da er im dritten Monat zu viel gefangen hat, muss er ein Bußgeld zahlen! Nun kennen wir also das Größer-als-Zeichen und das Kleiner-als-Zeichen. Da es in Ordnung ist, weniger als 999 Kilogramm zu fangen, und da es auch okay ist, exakt 999 Kilogramm zu fangen, gibt es doch vielleicht noch ein anderes Zeichen, das wir nutzen können. Ja, das gibt es wirklich! Wenn wir das Kleiner-als-Zeichen und das Gleichheitszeichen kombinieren, erhalten wir das hier: Nun haben wir eine mathematische Aussage, die korrekt alle Fälle beschreibt, in denen die Fischer nicht zur Kasse gebeten werden. Apropos Vorschriften: Da es NICHT erlaubt ist, 1000 Kilogramm Fisch oder mehr zu fangen, brauchen wir dafür auch noch ein Zeichen. Und natürlich gibt es so ein Zeichen! Wenn wir das Größer-als-Zeichen und das Gleichheitszeichen kombinieren, erhalten wir das hier: Nun haben wir mathematische Aussagen, die die Fischereivorschriften korrekt darstellen. Um die unterschiedlichen Fälle darzustellen, haben wir verschiedene Zeichen benutzt. Das Zeichen für Gleichheit ist das Gleichheitszeichen. Das Zeichen nutzt du, wenn zwei Werte exakt gleich groß sind, wie bei 'x' ist gleich 'y' oder bei 999 ist gleich 999. Für Ungleichheit gibt es hingegen vier unterschiedliche Zeichen. Wir nutzen das Kleiner-als-Zeichen, wenn der Wert auf der linken Seite der Ungleichung kleiner als der auf der rechten ist, zum Beispiel bei 800 ist kleiner als 999. Wir nutzen das Kleiner-gleich-Zeichen, wenn der Wert auf der linken Seite der Ungleichung kleiner oder genau so groß wie der auf der rechten Seite ist. 800 und 999 sind beide kleiner-gleich 999. Wir nutzen das Größer-als-Zeichen, wenn der Wert auf der linken Seite der Ungleichung größer ist als der auf der rechten, zum Beispiel bei 1250 ist größer als 999. Und schlussendlich nutzen wir das Größer-gleich-Zeichen, wenn der Wert auf der linken Seite der Ungleichung größer oder genau so groß wie der auf der rechten ist. Da 1250 mindestens so groß wie 1000 ist, können wir das Größer-als-Zeichen verwenden. Zurück zu Knut. Mal schauen, wie viel Fisch er heute gefangen hat. Häh!? Ist dir DIESE Fischart schon mal untergekommen?
-
THE END WAS FUNNY I LIKE THIS VIDEO 😂
-
War ganz gut erklärt🙂
-
cool
-
war ok
-
Süper
Gleichungen und Ungleichungen Übung
9.280
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.180
Lernvideos
38.662
Übungen
33.472
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel