30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Gleichungsumformungen mit den Grundrechenarten

Bewertung

Ø 3.7 / 25 Bewertungen

Die Autor*innen
Avatar
Team Digital
Gleichungsumformungen mit den Grundrechenarten
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Beschreibung Gleichungsumformungen mit den Grundrechenarten

Nach dem Schauen dieses Videos wirst du in der Lage sein, Gleichungen mit Hilfe der Grundrechenarten umzuformen.

Zunächst lernst du, welche Umformungen bei Gleichungen erlaubt sind. Anschließend, wie du vorgehen musst, um eine Gleichung zu lösen. Abschließend wird der Fall behandelt, dass die Unbekannte mehrfach in der Gleichung auftaucht.

Lerne, was du beachten musst, um Gleichungen mit Hilfe der Grundrechenarten zu lösen.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Gleichung, Unbekannte, Grundrechenarten, Addition, Subtraktion, Multiplikation und Division.

Bevor du dieses Video schaust, solltest du bereits wissen, was die Grundrechenarten sind und wie man mit ihnen rechnet. Außerdem solltest du wissen, was Variablen sind und wie man sie verwendet.

Nach diesem Video wirst du darauf vorbereitet sein, kompliziertere Gleichungen wie quadratische Gleichungen umzuformen.

Transkript Gleichungsumformungen mit den Grundrechenarten

Gleichungen, Umformungen - so viele Regeln - da kann man schnell den Überblick verlieren. Zum Glück bist du jetzt auf DAS ultimative Video zu „Gleichungsumformungen mit den Grundrechenarten gestoßen."

Oft hat man eine Größe gegeben, deren Wert unbekannt ist. Aber man hat eine Gleichung vorliegen, die die unbekannte Größe enthält. Was muss man denn für x einsetzen, damit die Gleichung erfüllt ist? Das kann man einer Gleichung nicht immer auf den ersten Blick ansehen. Und wie kommt man dann an den Wert der gesuchten Größe? Stellen wir uns dazu eine Waage vor. Auf der linken Seite liegen 3 x und 5. Rechts liegen 17. Die Waage ist im Gleichgewicht. Sie BLEIBT im Gleichgewicht, wenn wir auf beiden Seiten 5 ... wegnehmen. Jetzt liegen links noch 3 x und rechts 12. Wir wollen links aber nur EIN x haben, denn das ist ja die gesuchte Größe. Wenn wir links die Menge auf ein Drittel reduzieren, müssen wir das auch rechts tun. Und damit haben wir die Lösung: x gleich 4.

Du musst jetzt aber nicht bei jeder Gleichung so eine Waage hinzeichnen. Die soll nur verdeutlichen, was bei Gleichungsumformungen zu tun ist: Jede Rechenoperation muss AUF BEIDEN SEITEN gleichermaßen durchgeführt werden. Und welche Gleichungsumformungen sind ERLAUBT? Nun, wir dürfen auf BEIDEN Seiten die Grundrechenarten anwenden: Das heißt, die gleiche Zahl addieren, die gleiche Zahl subtrahieren, mit der gleichen Zahl, außer Null, multiplizieren und durch die gleiche Zahl, außer Null, dividieren. Wichtig ist hier, dass die Umformung AUF BEIDEN SEITEN gleichermaßen erfolgt und dass man weder mit Null multipliziert, noch durch Null teilt. Kommen wir nun zur Anwendung dieser erlaubten Umformungen: Natürlich kannst du jede der erlaubten Umformungen beliebig anwenden. Um am Ende aber eine Lösung zu erhalten, solltest du nach einer bestimmten Reihenfolge vorgehen. Schauen wir uns dazu DIESE Gleichung an und speziell den Term mit der Unbekannten. In welcher Reihenfolge wird hier gerechnet? Offenbar wird die Unbekannte x zunächst mit 4 multipliziert und davon werden dann 3 abgezogen. So kommt man auf den Term, der HIER steht. Um zur UNBEKANNTEN zurückzukehren, müssen wir also DIESE Rechenoperationen rückgängig machen. Und das in der umgekehrten Reihenfolge. Um die Subtraktion der 3 rückgängig zu machen, müssen wir 3 addieren auf beiden Seiten. Dann steht da noch '4 x ist gleich 16'. Um die Multiplikation mit 4 rückgängig zu machen, teilen wir durch 4 auf beiden Seiten. So erhalten wir 'x gleich 4'. Das ist das Ergebnis.

Betrachten wir zur Übung noch ein etwas komplizierteres Beispiel. Die Unbekannte wird hier zunächst durch 3 geteilt, dann werden 4 abgezogen, das Ganze wird mit 3 multipliziert und dazu werden 8 addiert.

Diese Schritte müssen wir jetzt rückwärts durchführen. Also subtrahieren wir zunächst 8, teilen durch 3, addieren 4 und multiplizieren mit 3. Das Ergebnis ist also 'x gleich 15'.

Nun müssen wir noch einen weiteren Fall besprechen: Die Unbekannte x kann in einer Gleichung nämlich auch MEHRFACH auftreten. Dann ist es hilfreich, die Glieder MIT der Unbekannten auf EINER Seite zu sammeln und die Glieder OHNE Unbekannte auf der ANDEREN Seite. Die Glieder MIT der Unbekannten kannst du zusammenbringen, indem Du die VORFAKTOREN verrechnest. 5x minus 2x ergibt also 3x.

Indem wir durch 3 teilen, erhalten wir das Ergebnis 'x gleich 3'.

Dabei muss man beachten, dass man Glieder mit der Unbekannten NUR addiert und subtrahiert! Man darf mit der Unbekannten nicht multiplizieren und nicht durch die Unbekannte dividieren. Um das zu verstehen, schauen wir uns DIESES Beispiel an. Wenn man hier durch die Unbekannte x teilt, kommt die Gleichung 4 gleich 6 heraus. Das ist natürlich falsch. Hat diese Gleichung also keine Lösung?

Doch, es wurde nur falsch gerechnet. Wenn man stattdessen 4x subtrahiert und durch 2 teilt, erhält man die Lösung. x gleich 0.

4 Kommentare

4 Kommentare
  1. cool

    Von Christoph Jasinski, vor etwa einem Monat
  2. Singh Saarder ist GRINCH

    Von Master-X-Fire, vor etwa 2 Monaten
  3. Sophia lügt
    Jägermeister Be the meister

    Von Singh Saardar , vor 2 Monaten
  4. Warum gibt es diesen Video zwei mal ?

    Von ♥ Sophia ♥, vor 3 Monaten

Gleichungsumformungen mit den Grundrechenarten Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gleichungsumformungen mit den Grundrechenarten kannst du es wiederholen und üben.
  • Gib an, wie du die Gleichung löst.

    Tipps

    Die Umkehroperation für die Addition ist die Subtraktion und umgekehrt.

    Die Umkehroperation für die Multiplikation ist die Division und umgekehrt.

    Sieh dir folgendes Beispiel an:

    $\begin{array}{llll} 2x+8 &=& 12 & \vert -8 \\ 2x &=& 4 & \vert :2 \\ x &=& 2 & \end{array}$

    Lösung

    Wenn wir erst einmal wissen, in welcher Reihenfolge wir einen Term berechnen, können wir diese Rechenoperationen rückgängig machen, um eine Gleichung zu lösen. Wir betrachten im Folgenden die Gleichung:

    $\begin{array}{ll} & 3x+5 = 17 \end{array}$

    Um den Term $3x+5$ zu lösen, würden wir aufgrund der Regel „Punkt- vor Strichrechnung“ die Unbekannte zuerst mit $3$ multiplizieren und dann zu diesem Produkt $5$ addieren. Beim Umstellen der Gleichung machen wir diese Rechenoperationen nun in umgekehrter Reihenfolge rückgängig. Wir subtrahieren also zuerst $5$, denn die Umkehroperation für die Addition ist die Subtraktion:

    $\begin{array}{lllll} & 3x+5 &=& 17 & \vert -5 \\ & 3x &=& 12 & \end{array}$

    Die Umkehroperation für die Multiplikation ist die Division, also dividieren wir jetzt durch $3$:

    $\begin{array}{lllll} & 3x &=& 12 & \vert :3 \\ & x &=& 4 & \end{array}$

    Die Lösung der Gleichung ist also $x=4$.

    Übrigens: Die ermittelte Lösung einer Gleichung kannst du mit einer Probe leicht auf Richtigkeit prüfen. Hierzu setzt du in der ursprünglichen Gleichung für die Unbekannte deine Lösung ein und prüfst, ob du eine wahre Aussage erhältst. Also:

    $\begin{array}{ll} & 3\cdot 4+5 = 12+5 = 17 \ \checkmark \end{array}$

  • Bestimme die Lösungen der Gleichungen.

    Tipps

    Tritt die Unbekannte $x$ in einer Gleichung mehrfach auf, ist es hilfreich, die Glieder mit der Unbekannten $x$ auf einer Seite und die Glieder ohne Unbekannte $x$ auf der anderen Seite der Gleichung zu sammeln.

    Beim Umstellen einer Gleichung darfst du Glieder mit der Unbekannten $x$ nur addieren und subtrahieren!

    Sieh dir folgendes Beispiel an:

    $\begin{array}{rcll} 2\cdot (\frac{x}{4}-1)+10 &=& 12&\vert -10 \\ 2\cdot (\frac{x}{4}-1) &=& 2&\vert :2 \\ \frac{x}{4}-1 &=& 1&\vert +1 \\ \frac{x}{4} &=& 2&\vert \cdot 4 \\ x &=& 8 & \end{array}$

    Du kannst auch mit Hilfe von Einsetzen von Werten für $x$ überprüfen, ob du eine wahre Aussage erhältst.

    Zum Beispiel kannst du $x=3$ bei der Gleichung $4x=6x$ einsetzen:

    $\begin{array}{rcll} 4x&=&6x \\ 4 \cdot 3 &=& 6 \cdot 3 \\ 12&=&18 \end{array}$

    Das ist keine wahre Aussage, also kann $x=3$ nicht Lösung der Gleichung sein.

    Lösung

    Wenn wir wissen, in welcher Reihenfolge wir einen Term berechnen, können wir diese Rechenoperationen rückgängig machen, um eine Gleichung zu lösen. Genauso gehen wir in den folgenden Beispielen vor:

    Beispiel 1: $~4x-3=13$

    Auf der linken Seite wird die Unbekannte $x$ zunächst mit $4$ multipliziert und von diesem Produkt wird die $3$ abgezogen. Um diese Rechenoperationen rückgängig zu machen, müssen wir zuerst $3$ addieren und anschließend durch $4$ dividieren:

    $\begin{array}{rcll} 4x-3 &=& 13 & \vert +3 \\ 4x &=& 16 & \vert :4 \\ x &=& 4 & \end{array}$

    Damit ist die Lösung dieser Gleichung $x=4$. Die Probe $4\cdot 4-3=16-3=13$ zeigt, dass unsere Lösung stimmt.

    Beispiel 2: $~3\cdot (\frac{x}{3}-4)+8 = 11$

    Beim Lösen des linken Terms gehen wir wie folgt vor: Die Unbekannte $x$ wird hier zunächst durch $3$ geteilt. Davon wird die $4$ abgezogen. Die Differenz wird mit $3$ multipliziert und zu diesem Produkt wird die $8$ addiert. Wir müssen also folgendermaßen umstellen:

    $\begin{array}{rcll} 3\cdot (\frac{x}{3}-4)+8 &=& 11 &\vert -8 \\ 3\cdot (\frac{x}{3}-4) &=& 3 &\vert :3 \\ \frac{x}{3}-4 &=& 1 &\vert +4 \\ \frac{x}{3} &=& 5 &\vert \cdot 3 \\ x &=& 15 & \end{array}$

    Die Probe $3\cdot (\frac {15}3-4)+8=3\cdot (5-4)+8=3\cdot 1+8=3+8=11$ zeigt, dass die Lösung $x=15$ korrekt ist.

    Beispiel 3: $~5x-6=2x+3$

    Tritt die Unbekannte $x$ in einer Gleichung mehrfach auf, ist es hilfreich, die Glieder mit der Unbekannten $x$ auf einer Seite und die Glieder ohne Unbekannte $x$ auf der anderen Seite der Gleichung zu sammeln. Beachte dabei: Beim Umstellen einer Gleichung darfst du Glieder mit der Unbekannten $x$ nur addieren und subtrahieren! Wir erhalten:

    $\begin{array}{rcll} 5x-6 &=& 2x+3 & \vert -2x \\ 5x-2x-6 &=& 3 & \vert +6 \\ 5x-2x &=& 3+6 & \\ 3x &=& 9 & \vert :3 \\ x &=& 3 & \end{array}$

    Diese Lösung ist korrekt, denn die Probe lautet: $\underbrace{5\cdot 3-6 = 15-6}_{\text{linke Seite}}=9=\underbrace{6+3 = 2\cdot 3+3}_{\text{rechte Seite}}$

    Beispiel 4: $~4x=6x$

    Auch hier müssen wir beachten, dass wir Glieder mit der Unbekannten $x$ nur addieren und subtrahieren dürfen. Es folgt:

    $\begin{array}{rcll} 4x &=& 6x & \vert -4x \\ 0 &=& 2x & \vert :2 \\ 0 &=& x & \end{array}$

    Die Probe liefert: $\underbrace{4\cdot 0}_{\text{linke Seite}}=0=\underbrace{2\cdot 0}_{\text{rechte Seite}}$.

  • Erschließe die Lösungen der Gleichungen mittels einer Probe.

    Tipps

    $x=6$ ist die korrekte Lösung der Gleichung $2x+12=4x$, denn die Probe liefert folgende wahre Aussage:

    $\underbrace{2\cdot 6+12}_{\text{linke Seite}}=24=\underbrace{4\cdot 6}_{\text{rechte Seite}}$

    Beachte die Rechenregeln:

    • Klammern zuerst
    • Punkt- vor Strichrechnung
    Lösung

    In dieser Aufgabe können wir mit Hilfe der Probe die richtige Lösung einer Gleichung ermitteln. Hierzu setzen wir die gegebenen Lösungen in die Gleichungen ein und überprüfen, für welche Lösungen wir jeweils eine wahre Aussage erhalten. Damit erhalten wir die folgenden Rechnungen:

    Lösung: $~x=3$

    Diese Lösung liefert für folgende Gleichungen eine wahre Aussage:

    • $2x=6$, denn $2\cdot 3=6$
    • $2(x+5)+2=6x$, denn $2(3+5)+2=18=6\cdot 3\\$
    Lösung: $~x=5$

    Diese Lösung liefert für folgende Gleichungen eine wahre Aussage:

    • $x+5=2x$, denn $5+5=10=2\cdot 5$
    • $8(x-4)+1=9$, denn $8(5-4)+1=9\\$
    Lösung: $~x=9$

    Diese Lösung liefert für folgende Gleichungen eine wahre Aussage:

    • $3x-5=22$, denn $3\cdot 9-5=22$
  • Ermittle die Lösungen der linearen Gleichungen und führe die Probe durch.

    Tipps

    Überlege dir im ersten Beispiel, in welcher Reihenfolge du den Term auf der linken Seite lösen würdest. Zum Umstellen der Gleichung musst du diese Rechenoperationen rückgängig machen.

    Die nächste Zeile der Rechnung gibt dir einen Hinweis dazu, welche Rechenoperation in der vorigen Zeile ausgeführt wurde.

    Bei der Durchführung einer Probe setzt du die Lösung der Gleichung an Stelle von $x$ ein und berechnest den Term. Erhältst du auf beiden Seiten der Gleichung denselben Wert, ist die Lösung für $x$ korrekt.

    Lösung

    Wir stellen beide Gleichungen so um, dass $x$ alleine auf einer Seite der Gleichung steht. Die Lösung überprüfen wir, indem wir jeweils eine Probe durchführen. Hierzu setzen wir die Lösung in die ursprüngliche Gleichung ein. Liefern beide Seiten der Gleichung denselben Wert, so ist die Lösung korrekt.

    Beispiel 1

    $\begin{array}{rcll} 3(\frac x8+5)-11 &=& 10 & \vert +11\\ 3(\frac x8+5) &=& 21 & \vert :3 \\ \frac x8+5 &=& 7 & \vert -5 \\ \frac x8 &=& 2 & \vert \cdot 8 \\ x &=& 16 & \end{array}$

    Die Probe liefert: $~3(16:8+5)-11=3\cdot 7-11=21-11=10$

    Damit liefert die Gleichung für $x=16$ eine wahre Aussage.

    Beispiel 2

    $\begin{array}{rcll} 9x-6 &=& 5x+2 & \vert +6 \\ 9x &=& 5x+8 & \vert -5x \\ 4x &=& 8 & \vert :4 \\ x &=& 2 & \end{array}$

    Die Probe liefert für die...

    • ...linke Seite: $~9\cdot 2-6= 18 -6= 12$.
    • ...rechte Seite: $ 5\cdot 2 +2= 10 +2= 12$.
    Damit liefert die Gleichung für $x=2$ eine wahre Aussage.

  • Bestimme die korrekten Aussagen.

    Tipps

    Damit die Waage im Gleichgewicht bleibt, muss man rechts und links jeweils den gleichen Körper wegnehmen oder hinzufügen.

    Die Umkehroperation der Multiplikation ist die Division.

    Lösung

    Um eine Gleichung nach der Unbekannten aufzulösen, ist es sinnvoll, sich die Reihenfolge, in der gerechnet wird, anzugucken. Um zur Unbekannten zurückzukehren, muss man dann alle Rechenoperationen rückgängig machen. Dazu nutzt man die folgenden Umkehroperationen:

    • Die Umkehroperation der Addition ist die Subtraktion.
    • Die Umkehroperation der Subtraktion ist die Addition.
    • Die Umkehroperation der Multiplikation ist die Division.
    • Die Umkehroperation der Division ist die Multiplikation.
    Das bedeutet zum Beispiel: Um eine Multiplikation mit $4$ rückgängig zu machen, muss durch $4$ geteilt werden.

    Dabei ist es ganz wichtig, dass beim Umstellen einer Gleichung die Umformung auf beiden Seiten der Gleichung gleichermaßen erfolgen muss.

    Die Unbekannte kann in einer Gleichung auch mehrfach auftreten. Dann ist es hilfreich, die Glieder mit der Unbekannten auf der einen Seite und die Glieder ohne die Unbekannte auf der anderen Seite zu sammeln.

  • Bestimme die Reihenfolge der Rechenoperationen beim Umstellen der Gleichung.

    Tipps

    Überlege, wie du den Term auf der linken Seite der Gleichung berechnen würdest. Mache dann alle Rechenoperationen in umgekehrter Reihenfolge rückgängig, um die Gleichung nach $x$ aufzulösen.

    Beachte, dass du beim Umstellen einer Gleichung immer die jeweilige Umkehroperation nutzen musst. Wird in einem Term zum Beispiel mit $4$ multipliziert, so musst du durch $4$ dividieren, um diese Operation rückgängig zu machen.

    Lösung

    Wir untersuchen den Term auf der linken Seite der Gleichung: $~ \dfrac{(5(2x+3)-5)}{2}-3=17$

    Dieser wird in folgender Reihenfolge berechnet:

    1. Die Unbekannte wird mit $2$ multipliziert.
    2. Zu diesem Produkt wird $3$ addiert.
    3. Diese Summe wird mit $5$ multipliziert.
    4. Von diesem Produkt wird $5$ subtrahiert.
    5. Diese Differenz wird durch $2$ dividiert.
    6. Von diesem Quotienten wird $3$ subtrahiert.
    Zum Umstellen der Gleichung, werden nun diese Rechenoperationen in umgekehrter Reihenfolge rückgängig gemacht. Es folgt:

    1. Es wird auf beiden Seiten $3$ addiert.
    2. Beide Seiten werden mit $2$ multipliziert.
    3. Es wird auf beiden Seiten $5$ addiert.
    4. Beide Seiten werden durch $5$ dividiert.
    5. Es wird von beiden Seiten $3$ subtrahiert.
    6. Beide Seiten werden durch $2$ dividiert.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

10.837

Lernvideos

44.369

Übungen

39.003

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden