30 Tage risikofrei testen

Überzeugen Sie sich von der Qualität unserer Inhalte im Basis- oder Premium-Paket.

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage risikofrei testen

Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck 02:48 min

Video bewerten

Textversion des Videos

Transkript Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck

Kevin ist allein in New York unterwegs. Er möchte wissen, wie hoch die Freiheitsstatue ist.

Mit Winkel und Länge die Höhe berechnen - Beispiel Freiheitsstatue

Dabei wird ihm die Angabe des Beobachtungswinkels in dem Fernglas helfen. Denn wann immer uns Längen- und Winkelangaben begegnen, helfen uns der Sinus, der Cosinus und der Tangens. Schauen wir uns die Situation doch einmal genauer an: Kevin steht auf einer Aussichtsplattform 500 m von der Freiheitsstatur entfernt. Das Fernglas zeigt ihm einen Beobachtungswinkel von 10,5° an. Du siehst, es ergibt sich ein rechtwinkliges Dreieck.

Aufbau eines rechtwinkligen Dreieckes

Du weißt bereits, dass die Seite gegenüber des Rechten Winkels Hypotenuse heißt. Und die beiden anderen Seiten heißen Katheten. Es handelt sich um besondere Katheten, denn diese Seite liegt gegenüber von dem Winkel α (Alpha). Deshalb heißt sie Gegenkathete. Diese Seite liegt direkt an dem Winkel. Wir nennen sie deshalb Ankathete.

Was sind Sinus, Kosinus und Tangens?

Sinus, Kosinus und Tangens von α beschreiben das Verhältnis dieser drei Seiten zueinander. Das Verhältnis der Länge der Gegenkathete zur Hypothenusenlänge wird durch den Sinus vom Winkel α ausgedrückt. Also ist Sinus α gleich Gegenkathete durch Hypotenuse. Das Verhältnis aus Ankathete zur Hypothenuse, ist der Kosinus von α, d. h. Kosinus α ist Ankathete durch Hypothenuse. Das Verhältnis von der Länge der Gegenkathete zu der Länge der Ankathete wird über den Tanges von α beschrieben. Tanges α ist Gegenkathete durch Ankathete. Jetzt kennst du die Formeln für den Sinus, den Kosinus und den Tangens im rechtwinkligen Dreieck.

Welche Formel verwenden wir zur Berechnung?

Also zurück zu unserer Ausgangssituation! Wir möchten die Höhe der Statur berechnen. Das ist die Gegenkathete zu dem Winkel α = 10,5°. Die Länge der Hypothenuse kennst du nicht, aber die Entfernung von Kevin zu der Statur. Es sind 500 Meter. Diese Seite ist die Ankathete zum Winkel α. Ein Blick auf die Formeln verrät dir, dass du den Tangens von α verwenden musst. Denn in den beiden anderen Formeln kommt die Hypothenuse vor, die dir hin dieser Rechnung aber nicht gegeben ist. Du stellst die Formel nach der gesuchten Größe, also der Gegenkathete um. Nun setzt du die gegebenen Werte in die Formel ein. Achte beim Ausrechnen darauf, dass dein Taschenrechner auf "Degree" gestellt ist! Du erhälst 92,7 Meter. Die Freiheitsstatur ist also 92,7 Meter hoch.

Informationen zum Video
1 Kommentar
  1. Default

    sehr schönes video das beste auf dieser plattform hat mir sehr geholfen weiter so :)

    Von Astrid Gloeckner, vor 5 Monaten