Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Sinus – Definition

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 44 Bewertungen
Die Autor*innen
Avatar
Team Digital
Sinus – Definition
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Sinus – Definition

Sinus – Definition

Der Sinus ist eine trigonometrische Funktion, mit der man Seitenverhältnisse in einem rechtwinkligen Dreieck berechnen kann. Ein rechtwinkliges Dreieck besitzt eine Hypotenuse und zwei Katheten. Je nachdem, welcher Winkel betrachtet wird, werden diese in Ankathete und Gegenkathete unterschieden.

Sinus Mathe

Der Sinus ist definiert als das Längenverhältnis von der Gegenkathete zur Hypotenuse:

$\text{Sinus eines Winkels} = \dfrac{\text{Gegenkathete des Winkels}}{\text{Hypotenuse}}$

Auf das Dreieck aus unserem Beispiel bezogen ergibt sich:

$\sin(\alpha)=\dfrac{a}{c}$

Neben dem Sinus spielen auch Cosinus und Tangens eine Rolle bei Berechnungen in rechtwinkligen Dreiecken.

Sinusfunktion

Du kannst den Sinus auch als Funktion im Koordinatensystem darstellen. Diese wird Sinusfunktion genannt.
Ihre Funktionsgleichung lautet $f(x)=\sin(x)$.

Sinusfunktion Graph

Sinus berechnen

Der Sinus im rechtwinkligen Dreiecken mit Winkeln der selben Größe ist, unabhängig von der Größe des Dreiecks, immer gleich. Zwei Dreiecke mit gleich großen Winkeln, aber unterschiedlichen Seitenlängen, werden auch als ähnlich bezeichnet. Für einen gegebenen Winkel kannst du den Sinus auch mit dem Taschenrechner berechnen.

rechtwinkliges Dreieck

Sinus berechnen – Beispiele

Je nachdem, welche Größen dir gegeben sind, kannst du mit dem Sinus verschiedene Größen berechnen.

Sinus mit gegebenen Seitenlängen berechnen

Gegeben ist ein Dreieck mit Winkel $\alpha = 30^\circ$, der Seite $a =13~\text{cm}$ und der Hypotenuse $c = 26~\text{cm}$. Setzen wir alles in die Definition des Sinus ein, erhalten wir:

$\sin(30^\circ) = \dfrac{13}{26} = \dfrac{1}{2}$

Der Sinus von $30^\circ$ ist also $\frac{1}{2}$. Wir können, wenn wir zwei Größen der Gleichung kennen, die fehlende Größe mit Hilfe des Sinus berechnen.

Fehlende Größen mit dem Sinus berechnen

Haben wir beispielsweise zusätzlich zum Winkel von $30^\circ$ die Hypotenusenlänge von $c=10~\text{cm}$ gegeben, ergibt sich:

$\sin(30^\circ) = \dfrac{a}{10~\text{cm}} \quad |\cdot 10~\text{cm}$

$\Rightarrow \underbrace{\sin(30^\circ)}_{=\frac{1}{2}} \cdot 10~\text{cm} = 5~\text{cm} = a$

Sinus – Zusammenfassung

  • Der Sinus findet seine Anwendung in rechtwinkligen Dreiecken.
  • Du kannst den Sinus für Winkel im Bogen oder Gradmaß berechnen.
  • Der Sinus eines Winkels wird berechnet mit dem Verhältnis der Gegenkathete des Winkels zu der Hypotenuse:
    $\text{Sinus eines Winkels} = \dfrac{\text{Gegenkathete des Winkels}}{\text{Hypotenuse}}$

Sinus als Seitenverhältnis im rechtwinkligen Dreieck Zusammenfassung

Wichtige Werte des Sinus

Die folgende Tabelle fasst einige wichtige Sinuswerte zusammen.

$\alpha$ $0^\circ$ $30^\circ$ $45^\circ$ $60^\circ$ $90^\circ$
$\sin(\alpha)$ 0 $\dfrac{\sqrt{3}}{2}$ $\dfrac{\sqrt{2}}{2}$ $\dfrac{1}{2}$ 1

Sinus – Übungen

Dir ist ein rechtwinkliges Dreieck mit den folgenden Angaben gegeben:

  • $\alpha=75^\circ$
  • $\gamma=15^\circ$
  • $a=14{,}9~\text{cm}$
  • $b=15{,}5~\text{cm}$
  • $c=4~\text{cm}$
Aufgabe 1: Berechne den Sinus vom Winkel $\alpha$
Aufgabe 2: Berechne den Sinus vom Winkel $\gamma$

Häufig gestellte Fragen zum Thema Sinus

Was genau ist der Sinus?
Wie rechnet man den Sinus aus?
Was ergibt $\cos(\alpha) \cdot \sin(\alpha)$?
Wie lautet die allgemeine Sinusfunktion?
Was beschreibt eine Sinusfunktion?
Für was braucht man die Sinusfunktion?
Was sind die Eigenschaften der Sinusfunktion?

Transkript Sinus – Definition

Linus ist leidenschaftlicher Kitesurfer. Mit seinem Board flitzt er nur so durchs Wasser und macht dabei eine glänzende Figur. Für die Geschwindigkeit sorgt dabei der Wind in seinem Kite, der hoch über ihm durch die Lüfte saust. Doch wie hoch genau ist der Kite überhaupt? Um das zu berechnen, reaktiviert Linus einfach sein Wissen zur „Definition des Sinus am rechtwinkligen Dreieck“. Linus weiß genau, wie er die Situation mathematisch analysieren kann. Dafür muss er nur wissen, wie lang seine Leine ist und in welchem Winkel er den Kite hält. Wie das funktionieren soll? Nun ja, schauen wir uns dazu mal ein rechtwinkliges Dreieck an. Wir betrachten den Winkel Alpha als Ausgangspunkt: Jetzt können wir den Seiten des rechtwinkligen Dreiecks spezielle Bezeichnungen geben, die du dir gut merken solltest. Die Hypotenuse liegt immer gegenüber vom rechten Winkel. Sie ist die längste Dreiecksseite, in unserem Fall Seite c. Die Seite, die dem betrachteten Winkel gegenüberliegt, heißt Gegenkathete. Die Gegenkathete des Winkels Alpha ist hier also Seite a. Die dritte Seite unseres Dreiecks, die den Winkel Alpha mit dem rechten Winkel verbindet, nennen wir Ankathete, da sie an unserem Winkel anliegt. Das ist in diesem Fall Seite b. Diese Seitenbezeichnungen reichen bereits aus, um den Sinus im rechtwinkligen Dreieck zu definieren. Es gilt: Sinus von Alpha gleich Gegenkathete durch Hypotenuse. Wir teilen also die Seitenlänge der Gegenkathete durch die Seitenlänge der Hypotenuse und berechnen somit das Seitenverhältnis. In diesem Dreieck also das Verhältnis von Seite a zu Seite c. Der konkrete Wert, der dabei herauskommt, ist dann der eindeutig bestimmte Sinuswert des betrachteten Winkels Alpha. Wir können somit, wenn wir den Winkel Alpha kennen, das Seitenverhältnis von Gegenkathete zu Hypotenuse erschließen und andersherum. So ist zum Beispiel das Seitenverhältnis von Gegenkathete zu Hypotenuse bei einem gegebenen Winkel von dreißig Grad gleich ein Halb. In anderen Worten: Die Hypotenuse ist dann doppelt so lang wie die Gegenkathete und das gilt in allen rechtwinkligen Dreiecken mit dieser Winkelgröße. Wie lang die Seiten genau sind, wissen wir allerdings erst, wenn wir eine der beiden Seitenlängen kennen. Hat die Gegenkathete beispielsweise eine Länge von fünf Zentimetern, muss die Hypotenuse zehn Zentimeter lang sein. Wissen wir hingegen, dass die Hypotenuse vierundzwanzig Zentimeter lang ist, muss die Seitenlänge der Gegenkathete die Hälfte, also zwölf Zentimeter betragen. Im Falle eines dreißig-Grad-Winkels beträgt das Verhältnis von Gegenkathete zu Hypotenuse in jedem rechtwinkligen Dreieck ein Halb. Wir können somit, wenn wir zwei der drei betrachteten Größen kennen, nämlich die Winkelgröße von Alpha, die Seitenlänge unserer Gegenkathete oder die der Hypotenuse, die dritte ganz einfach ausrechnen. Wir benötigen dafür allerdings die Sinusfunktion unseres Taschenrechners. Wir sollten außerdem immer im Blick behalten, dass die Definition des Sinus nur im rechtwinkligen Dreieck gilt. Alles klar, zurück zu Linus und seinem Kite: Wie können wir denn nun die Höhe des Kites bestimmen? Dazu denken wir uns zunächst dieses Dreieck. Winkel Alpha ist hier gleich vierzig Grad. Der rechte Winkel liegt in diesem Dreieck bei Eckpunkt B. Die Kiteleine, mit einer Länge von fünfundzwanzig Metern, ist unsere Hypotenuse. Die gesuchte Flughöhe des Kites entspricht der Gegenkathete a. Wenn wir uns jetzt unsere Sinusformel anschauen erkennen wir, dass wir zwei der drei vertretenen Größen bereits gegeben haben, nämlich den Winkel Alpha und die Länge unserer Hypotenuse. Nachdem wir die Werte in unsere Formel eingesetzt haben, müssen wir nur noch nach a auflösen und den entsprechenden Sinuswert mit unserem Taschenrechner berechnen. Und schon haben wir die Höhe des Kites bestimmt. Es sind circa sechzehn Meter, ganz schön hoch! Während Linus zum Sprung ansetzt, fassen wir nochmal kurz zusammen. Der Sinus von Alpha ist im rechtwinkligen Dreieck definiert als das Seitenverhältnis von Gegenkathete zu Hypotenuse. Das heißt: Bei allen rechtwinkligen Dreiecken, bei denen der Winkel Alpha gleich groß ist, hat das Verhältnis „Gegenkathete von Alpha zu Hypotenuse“ denselben Wert. Dieser Wert ist eindeutig durch die Größe des Winkels Alpha bestimmt. Kennen wir die Größe von Winkel Alpha, können wir den Sinus von Alpha mit dem Taschenrechner bestimmen und so im rechtwinkligen Dreieck von Winkelgrößen auf Seitenlängen schließen oder auch andersherum. Linus holt ordentlich Schwung und oh, da war es wohl doch ein bisschen zu windig.

7 Kommentare
7 Kommentare
  1. Hallo Marlya, danke für den Hinweis. Wird korrigiert. Liebe Grüße aus der Redaktion!

    Von Lukas Peitz, vor 3 Monaten
  2. ich glaube bei Minute 4:31 sollte nicht 0,745 sondern 0,642 rauskommen. Dann stimmt die Rechnung nämlich wieder. Mit dem Wert im Video würde am Ende 18,5 und nicht 16 rauskommen.

    Von Marlya, vor 3 Monaten
  3. Hallo Kira,
    danke für deinen Hinweis. Wir haben die Tabelle korrigiert. Liebe Grüße aus der Redaktion!

    Von Lukas Peitz, vor 7 Monaten
  4. Die oben stehende Tabelle zu "Wichtige Werte zu Sinus" ist falsch!

    Von Kira, vor 7 Monaten
  5. Hallo Zara,
    Danke für deine Frage. Die Aufgabe in dem Video kann mit dem Sinus gelöst werden, da wir Angaben über den Winkel Alpha und die Hypotenuse haben und die Gegenkathete suchen. Der Tangens würde sich anbieten, wenn wir stattdessen Angaben zur Ankathete haben würden, weil er gleich "Gegenkathete durch Ankathete" ist. Oder bezieht sich deine Frage auf eine andere Aufgabe? Liebe Grüße aus der Redaktion!

    Von Lukas Peitz, vor 12 Monaten
Mehr Kommentare

Sinus – Definition Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Sinus – Definition kannst du es wiederholen und üben.
  • Gib an, ob die Aussagen richtig sind.

    Tipps

    $\text{sin}(\alpha) = \dfrac{\text{Gegenkathete von }\alpha}{\text{Hypotenuse}}$

    Lösung

    Der Sinus gilt nur im rechtwinkligen Dreieck. Im rechtwinkligen Dreieck nennt man die Seite, welche gegenüber des rechten Winkels liegt die Hypotenuse. Der Sinus ist das Längenverhältnis aus der Gegenkathete eines Winkels zur Hypotenuse:

    $\text{sin}(\alpha) = \dfrac{\text{Gegenkathete von }\alpha}{\text{Hypotenuse}}$

    Dabei liegt die Gegenkathete gegenüber des genannten Winkels. Für einen $30^\circ$-Winkel beträgt der Sinus immer genau $\frac{1}{2}$.
    Damit ergibt sich bei den Aussagen folgende Unterteilung:

    Richtige Aussagen:

    • Der Sinus gilt nur im rechtwinkligen Dreieck.
    • Der Sinus ist ein Längenverhältnis.
    • Der Sinus bezieht sich immer auf einen Winkel im rechtwinkligen Dreieck.

    Falsche Aussagen:

    • Der Sinus von $30^\circ$ beträgt immer $0,3$.
    Korrekt wäre: Der Sinus von $30^\circ$ beträgt immer genau $\frac{1}{2}$.
    • Der Sinus verknüpft die Hypotenuse und die Ankathete.
    Korrekt wäre: Der Sinus verknüpft die Hypotenuse und die Gegenkathete.

  • Vervollständige die Rechnung zur Bestimmung der Seite $a$.

    Tipps

    Überlege zunächst, was in dem abgebildeten Dreieck die Gegenkathete von $\alpha$ und was die Hypotenuse ist.

    Du kannst die Gleichung umformen, indem du auf beiden Seiten der Gleichung dieselbe Rechenoperation durchführst.

    Lösung

    Wir stellen die Gleichung für den Sinus auf und formen diese nach $a$ um:

    $\begin{array}{rrlrr} \sin(\alpha) & = & \dfrac{\text{Gegenkathete von} ~\alpha}{\text{Hypotenuse}} & & \\ \sin(40^\circ) & = & \dfrac{a}{25~\text{m}} & | \cdot 25~\text{m} & \\ \sin(40^\circ) \cdot 25~\text{m}& = &a & & \\ a & = & \sin(40^\circ) \cdot 25~\text{m} & & \\ a & \approx & 0,64 \cdot 25~\text{m} & & \\ a & \approx & 16~\text{m} & & \\ \end{array}$

    Den Wert für $\sin(40^\circ)$ bestimmen wir dabei mit dem Taschenrechner.

  • Bestimme die fehlende Seite.

    Tipps

    $\text{sin}(30^\circ)=\frac{1}{2}$

    Ermittle zunächst, was die Gegenkathete und was die Hypotenuse in dem Dreieck ist.

    Das Seitenverhältnis von Gegenkathete zu Hypotenuse hat für einen $30^\circ$-Winkel einen ganz bestimmten Wert.

    Lösung

    Der Sinus im rechtwinkligen Dreieck ist definiert als:

    $\text{sin}(\alpha) = \dfrac{\text{Gegenkathete}}{\text{Hypotenuse}}$

    Er stellt also ein Längenverhältnis dar. Für einen Winkel von $30^\circ$ beträgt dieses Längenverhältnis genau $\frac{1}{2}$.
    Wir können also schreiben:

    $\text{sin}(30^\circ)=\frac{1}{2}$

    Dies bedeutet, dass die Hypotenuse dann immer doppelt so lang ist wie die Gegenkathete. Damit ergibt sich bei den Beispielen:

    Beispiel 1:
    $a= 6 ~\text{cm}$ und $c= 12 ~\text{cm}$

    Beispiel 2:
    $a= 12~ \text{m}$ und $c= 24 ~\text{m}$

    Beispiel 3:
    $a= 9~ \text{cm}$ und $c= 18 ~\text{cm}$

  • Stelle die Formel für den Sinus auf.

    Tipps

    Der Sinus bezieht sich immer auf einen bestimmten Winkel. Du musst die Gegenkathete dieses Winkels ermitteln. Sie liegt dem Winkel gegenüber.

    $\sin(\alpha)=\frac{k}{i}$

    Lösung

    Der Sinus im rechtwinkligen Dreieck ist definiert als:

    $\text{sin}(\alpha) = \dfrac{\text{Gegenkathete}}{\text{Hypotenuse}}$

    Die Hypotenuse liegt immer gegenüber des rechten Winkels. In diesem Dreieck ist also $k$ die Hypotenuse.

    Die Gegenkathete liegt immer gegenüber des entsprechenden Winkels:

    • Gegenkathete von $\alpha$ ist $l$
    • Gegenkathete von $\beta$ ist $m$

    Wir können nun in die Formel einsetzen und erhalten:

    $\sin(\alpha)=\frac{l}{k}$

    $\sin(\beta)=\frac{m}{k}$

  • Gib die richtigen Bezeichnungen der Seiten im rechtwinkligen Dreieck an.

    Tipps

    Die Gegenkathete liegt gegenüber des zugehörigen Winkels.

    Die Hypotenuse ist die längste Seite im rechtwinkligen Dreieck.

    Die Hypotenuse liegt gegenüber des rechten Winkels.

    Lösung

    Wir nennen die Seite gegenüber des rechten Winkels die Hypotenuse. Sie ist immer die längste Seite im rechtwinkligen Dreieck.

    Die anderen beiden Seiten sind die Katheten:

    • Die Seite gegenüber des Winkels $\alpha$ nennen wir Gegenkathete.
    • Die Seite, welche an dem Winkel $\alpha$ anliegt, nennen wir Ankathete.
  • Berechne die fehlende Größe.

    Tipps

    Du kannst den Sinus anwenden. Dieser ist das Längenverhältnis aus Gegenkathete durch Hypotenuse.

    Wenn du die Gleichung für den Sinus aufgestellt hast, dann kannst du sie nach der gesuchten Größe umformen, indem du auf beiden Seiten der Gleichung dieselbe Rechenoperation durchführst.

    Lösung

    Der Sinus im rechtwinkligen Dreieck ist definiert als:

    $\text{sin}(\alpha) = \dfrac{\text{Gegenkathete}}{\text{Hypotenuse}}$

    • Die Hypotenuse liegt immer gegenüber des rechten Winkels.
    • Die Gegenkathete liegt immer gegenüber des entsprechenden Winkels.
    Wir identifizieren also jeweils die Hypotenuse und die Gegenkathete, setzen in die Formel ein und lösen nach der gesuchten Größe auf. Die Sinuswerte können wir bei der Berechnung mit dem Taschenrechner bestimmen.

    Beispiel 1:

    Wir kennen den Winkel $\gamma = 30^\circ$ und seine Gegenkathete $f = 16$.
    Gesucht ist die Hypotenuse $d$.

    $\begin{array}{rcll} \sin(30^\circ) & = & \frac{16}{d} & |\cdot d & \\ \sin(30^\circ) \cdot d & = & 16 & |:\sin(30^\circ) & \\ d & = & \frac{16}{\sin(30^\circ)} && \\ d & = & \frac{16}{0,5} && \\ d & = & 32 && \\ \end{array}$

    Beispiel 2:

    Wir kennen die Hypotenuse $d = 4$ und den Winkel $\gamma = 42^\circ$.
    Gesucht ist $f$, die Gegenkathete von $\gamma$.

    $\begin{array}{rrlrr} \sin(42^\circ) & = & \frac{f}{4} & |\cdot 4 & \\ \sin(42^\circ) \cdot 4 & = & f & & \\ f & = & \sin(42^\circ) \cdot 4 & & \\ f & \approx & 0,67 \cdot 4 & & \\ f & \approx & 2,7 && \\ \end{array}$

    Beispiel 3:

    Wir kennen die Hypotenuse $d = 31$ und den Winkel $\beta= 51^\circ$.
    Gesucht ist $e$, die Gegenkathete von $\beta$.

    $\begin{array}{rrlrr} \sin(51^\circ) & = & \frac{e}{31} & |\cdot 31 & \\ \sin(51^\circ) \cdot 31 & = & e & & \\ e & = & \sin(51^\circ) \cdot 31 && \\ e & \approx & 0,78 \cdot 31 && \\ e & \approx & 24,1 && \\ \end{array}$