30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Sinus – Definition

Bewertung

Ø 5.0 / 1 Bewertungen

Die Autor*innen
Avatar
Team Digital
Sinus – Definition
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Sinus – Definition

Inhalt

Der Sinus

Was ist der Sinus?

Der Sinus ist eine trigonometrische Funktion, mit der man Seitenverhältnisse in einem rechtwinkligen Dreieck berechnen kann. Betrachten wir ein rechtwinkliges Dreieck mit den wichtigsten Bezeichnungen:

Sinus Mathe

Die längste Seite eines rechtwinkligen Dreiecks heißt Hypotenuse. Sie liegt dem rechten Winkel immer genau gegenüber. Die beiden anderen Seiten heißen Katheten. Wenn wir einen Winkel betrachten, können wir die Katheten noch spezifizieren. Die Seite, die dem Winkel gegenüberliegt, heißt Gegenkathete des Winkels. Die Seite, die am Winkel anliegt, heißt Ankathete des Winkels. In unserem Beispiel ist also $a$ die Gegenkathete von $\alpha$ und $b$ ist die Ankathete. Die Seite $c$ ist die Hypotenuse.

Sinus – Definition

Der Sinus ist definiert als das Längenverhältnis von Gegenkathete zu Hypotenuse:

$\text{Sinus eines Winkels} = \frac{\text{Gegenkathete des Winkels}}{\text{Hypotenuse}}$

Auf das Dreieck aus unserem Beispiel bezogen ergibt sich also für den Sinus die Formel:

$\sin(\alpha)=\frac{a}{c}$

Das wollen wir anhand eines konkreten Beispiels berechnen.

Sinus – Beispiel

Gegeben sind der Winkel $\alpha$ mit $30°$, die Seite $a$ mit einer Länge von $13~\text{cm}$ und die Hypotenuse mit einer Länge von $26~\text{cm}$. Setzen wir alles in die Definition des Sinus ein, erhalten wir:

$\sin(30^\circ) = \frac{13}{26} = \frac{1}{2}$

Der Sinus von $30°$ ist also $\frac{1}{2}$. Das gilt unabhängig von der Größe des Dreiecks, also der Länge der Seiten. Wir können daher, wenn wir beispielsweise den Winkel und die Länge der Hypotenuse kennen, die fehlende Seite mithilfe des Sinus berechnen.

Haben wir beispielsweise zusätzlich zum Winkel von $30°$ die Hypotenusenlänge von $c=10~\text{cm}$ gegeben, ergibt sich:

$\sin(30^\circ) = \frac{a}{10~\text{cm}} ~ ~ ~ ~ |\cdot 10~\text{cm}$

$\rightarrow \underbrace{\sin(30^\circ)}_{=\frac{1}{2}} \cdot 10~\text{cm} = a = 5~\text{cm}$

Je nachdem welche Größen gegeben sind, kannst du so die fehlenden Größen berechnen. Den Sinus selbst kannst du für gegebene Winkel auch mit dem Taschenrechner berechnen. Andernfalls musst du Dreiecke mit geeigneten Seitenlängen konstruieren.

Dieses Video

In diesem Video erfährst du, was der Sinus ist und wie er definiert ist. Du erfährst auch, wie der Sinus Linus dabei hilft, die Höhe seines Drachens zu berechnen.

Transkript Sinus – Definition

Linus ist leidenschaftlicher Kitesurfer. Mit seinem Board flitzt er nur so durchs Wasser und macht dabei eine glänzende Figur. Für die Geschwindigkeit sorgt dabei der Wind in seinem Kite, der hoch über ihm durch die Lüfte saust. Doch wie hoch genau ist der Kite überhaupt? Um das zu berechnen, reaktiviert Linus einfach sein Wissen zur „Definition des Sinus am rechtwinkligen Dreieck“. Linus weiß genau, wie er die Situation mathematisch analysieren kann. Dafür muss er nur wissen, wie lang seine Leine ist und in welchem Winkel er den Kite hält. Wie das funktionieren soll? Nun ja, schauen wir uns dazu mal ein rechtwinkliges Dreieck an. Wir betrachten den Winkel Alpha als Ausgangspunkt: Jetzt können wir den Seiten des rechtwinkligen Dreiecks spezielle Bezeichnungen geben, die du dir gut merken solltest. Die Hypotenuse liegt immer gegenüber vom rechten Winkel. Sie ist die längste Dreiecksseite, in unserem Fall Seite c. Die Seite, die dem betrachteten Winkel gegenüberliegt, heißt Gegenkathete. Die Gegenkathete des Winkels Alpha ist hier also Seite a. Die dritte Seite unseres Dreiecks, die den Winkel Alpha mit dem rechten Winkel verbindet, nennen wir Ankathete, da sie an unserem Winkel anliegt. Das ist in diesem Fall Seite b. Diese Seitenbezeichnungen reichen bereits aus, um den Sinus im rechtwinkligen Dreieck zu definieren. Es gilt: Sinus von Alpha gleich Gegenkathete durch Hypotenuse. Wir teilen also die Seitenlänge der Gegenkathete durch die Seitenlänge der Hypotenuse und berechnen somit das Seitenverhältnis. In diesem Dreieck also das Verhältnis von Seite a zu Seite c. Der konkrete Wert, der dabei herauskommt, ist dann der eindeutig bestimmte Sinuswert des betrachteten Winkels Alpha. Wir können somit, wenn wir den Winkel Alpha kennen, das Seitenverhältnis von Gegenkathete zu Hypotenuse erschließen und andersherum. So ist zum Beispiel das Seitenverhältnis von Gegenkathete zu Hypotenuse bei einem gegebenen Winkel von dreißig Grad gleich ein Halb. In anderen Worten: Die Hypotenuse ist dann doppelt so lang wie die Gegenkathete und das gilt in allen rechtwinkligen Dreiecken mit dieser Winkelgröße. Wie lang die Seiten genau sind, wissen wir allerdings erst, wenn wir eine der beiden Seitenlängen kennen. Hat die Gegenkathete beispielsweise eine Länge von fünf Zentimetern, muss die Hypotenuse zehn Zentimeter lang sein. Wissen wir hingegen, dass die Hypotenuse vierundzwanzig Zentimeter lang ist, muss die Seitenlänge der Gegenkathete die Hälfte, also zwölf Zentimeter betragen. Im Falle eines dreißig-Grad-Winkels beträgt das Verhältnis von Gegenkathete zu Hypotenuse in jedem rechtwinkligen Dreieck ein Halb. Wir können somit, wenn wir zwei der drei betrachteten Größen kennen, nämlich die Winkelgröße von Alpha, die Seitenlänge unserer Gegenkathete oder die der Hypotenuse, die dritte ganz einfach ausrechnen. Wir benötigen dafür allerdings die Sinusfunktion unseres Taschenrechners. Wir sollten außerdem immer im Blick behalten, dass die Definition des Sinus nur im rechtwinkligen Dreieck gilt. Alles klar, zurück zu Linus und seinem Kite: Wie können wir denn nun die Höhe des Kites bestimmen? Dazu denken wir uns zunächst dieses Dreieck. Winkel Alpha ist hier gleich vierzig Grad. Der rechte Winkel liegt in diesem Dreieck bei Eckpunkt B. Die Kiteleine, mit einer Länge von fünfundzwanzig Metern, ist unsere Hypotenuse. Die gesuchte Flughöhe des Kites entspricht der Gegenkathete a. Wenn wir uns jetzt unsere Sinusformel anschauen erkennen wir, dass wir zwei der drei vertretenen Größen bereits gegeben haben, nämlich den Winkel Alpha und die Länge unserer Hypotenuse. Nachdem wir die Werte in unsere Formel eingesetzt haben, müssen wir nur noch nach a auflösen und den entsprechenden Sinuswert mit unserem Taschenrechner berechnen. Und schon haben wir die Höhe des Kites bestimmt. Es sind circa sechzehn Meter, ganz schön hoch! Während Linus zum Sprung ansetzt, fassen wir nochmal kurz zusammen. Der Sinus von Alpha ist im rechtwinkligen Dreieck definiert als das Seitenverhältnis von Gegenkathete zu Hypotenuse. Das heißt: Bei allen rechtwinkligen Dreiecken, bei denen der Winkel Alpha gleich groß ist, hat das Verhältnis „Gegenkathete von Alpha zu Hypotenuse“ denselben Wert. Dieser Wert ist eindeutig durch die Größe des Winkels Alpha bestimmt. Kennen wir die Größe von Winkel Alpha, können wir den Sinus von Alpha mit dem Taschenrechner bestimmen und so im rechtwinkligen Dreieck von Winkelgrößen auf Seitenlängen schließen oder auch andersherum. Linus holt ordentlich Schwung und oh, da war es wohl doch ein bisschen zu windig.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

2.230

sofaheld-Level

3.746

vorgefertigte
Vokabeln

10.811

Lernvideos

44.101

Übungen

38.759

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden