30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Sinus, Cosinus und Tangens – Anwendungsaufgaben

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 4.3 / 6 Bewertungen

Die Autor*innen
Avatar
Team Digital
Sinus, Cosinus und Tangens – Anwendungsaufgaben
lernst du in der 9. Klasse - 10. Klasse

Grundlagen zum Thema Sinus, Cosinus und Tangens – Anwendungsaufgaben

Nach dem Schauen dieses Videos wirst du in der Lage sein, mit Sinus, Cosinus und Tangens zu rechnen.

Zunächst wiederholst du , wie Sinus, Cosinus und Tangens definiert sind. Anschließend werden ein paar Übungsaufgaben gerechnet.

Sinus Cosinus Tangens

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Sinus, Cosinus, Tangens, rechtwinkliges Dreieck, Gegenkathete, Ankathete und Hypotenuse.

Bevor du dieses Video schaust, solltest du bereits wissen, wie Sinus, Cosinus und Tangens im rechtwinkligen Dreieck definiert sind.

Nach diesem Video wirst du darauf vorbereitet sein, zu lernen, wie Sinus, Cosinus und Tangens am Einheitskreis definiert werden können.

Transkript Sinus, Cosinus und Tangens – Anwendungsaufgaben

Die Baldwin Street in Dunedin , Neuseeland ist die steilste Straße der Welt! An ihrer steilsten Stelle hat sie ein Steigung von 34,8 Prozent! Wie viele Höhenmeter man wohl geschafft hat, wenn man sie erklommen hat? Diese Frage können wir mit Hilfe der Trigonometrie beantworten! Lass uns also nochmal einen Blick auf „Sinus, Cosinus und Tangens“ werfen! Sinus, Cosinus, und Tangens, sind durch Seitenverhältnisse im rechtwinkligen Dreieck definiert. Der Sinus von Alpha ist gleich Gegenkathete von Alpha durch Hypotenuse, der Cosinus von Alpha gleich Ankathete von Alpha durch Hypotenuse, und der Tangens von Alpha ist gleich Gegenkathete durch Ankathete. Mit Hilfe dieser drei Formeln können wir unbekannte Größen in einem rechtwinkligen Dreieck berechnen. Dazu brauchen wir mindestens zwei Angaben über Winkelgröße und Seitenlängen. Dann müssen wir nur noch überlegen, welche der drei Formeln uns weiterhilft, und können mit dieser dann die gesuchte Größe berechnen. Ein erstes Beispiel. Gegeben ist dieses rechtwinklige Dreieck mit Alpha gleich fünfunddreißig Grad, und der „Seite c“ mit einer Seitenlänge von sieben Zentimetern. Gesucht ist die Länge von „Seite b“. Wie bekommen wir die jetzt heraus? Als erstes sollten wir den Seiten des Rechtecks die entsprechenden Begriffe zuordnen. Die Hypotenuse liegt dem rechten Winkel gegenüber. Das ist hier „Seite c“. Dann schauen wir auf den bekannten Winkel Alpha. Die Dreiecksseite, die ihm anliegt, ist die Ankathete. Die Dreiecksseite, die ihm gegenüberliegt, ist die Gegenkathete. Hier muss man manchmal ganz schön aufpassen, um nicht durcheinander zu kommen. Jetzt ist uns klar: Wir haben die Länge der Hypotenuse gegeben, und suchen die Länge der Ankathete. Für die Berechnung brauchen wir also die Formel des Cosinus! Wir setzen die gegebenen Werte ein, und stellen nach b um. Jetzt müssen wir nur noch den Cosinus von fünfunddreißig Grad berechnen – dazu benutzen wir den Taschenrechner. Wir müssen darauf achten, dass der Taschenrechner im Modus „D-E-G“ ist. Das steht für „degree“, also für die Maßeinheit Grad. Schon haben wir die gesuchte Seitenlänge: circa 5,73 Zentimeter. Ein weiteres Beispiel. In diesem rechtwinkligen Dreieck ist die „Seite a“ sechs, und die „Seite c“ acht Zentimeter lang. Gesucht ist dieses mal der Winkel Alpha, der hier liegt. Zuerst verschaffen wir uns wieder einen Überblick. „Seite c“ liegt dem rechten Winkel gegenüber. Das ist also unsere Hypotenuse. Die andere bekannte Größe – Seite a – liegt gegenüber von unserem Winkel Alpha. Es handelt sich somit um die Gegen- und nicht um die Ankathete von Alpha. Wir kennen also die Länge von Gegenkathete und Hypotenuse. Daher nutzen wir den Sinus! Der Sinus von Alpha ist gleich Gegenkathete durch Hypotenuse. Also gleich sechs Zentimeter geteilt durch acht Zentimeter, gekürzt drei Viertel. Jetzt müssen wir die Umkehrfunktion des Sinus nutzen – den Arkussinus. Alpha ist also gleich dem Arkussinus von 0,75. Wir geben das in den Taschenrechner ein. Auf vielen Taschenrechnern ist der Arkussinus abgekürzt mit „Sinus hoch minus eins“. So erhalten wir das Ergebnis: circa 48,6 Grad! Na dann können wir uns ja jetzt nochmal der Baldwin Street widmen. Folgende Informationen haben wir gegeben. Auf dem steilsten Abschnitt der Straße beträgt der durchschnittliche Steigungswinkel 16,3 Grad. Dieser Abschnitt ist außerdem einhunderteinundsechzig Meter lang. Und hier haben wir einen rechten Winkel. Wir wollen untersuchen, wie viele Höhenmeter auf dieser Strecke hinzukommen. Wir beschriften die unbekannte Größe mit einem x. Pausiere das Video doch kurz und überlege selbst, dann gehen wir die Lösung gemeinsam durch. Da die gegebene Seitenlänge an dem bekannten Winkel liegt und diesen mit dem rechten Winkel verbindet, kennen wir die Länge der Ankathete. Gesucht ist die Länge der Seite, die unserem Winkel gegenüberliegt, sprich der Gegenkathete. Dafür können wir die Formel des Tangens nutzen. Wir setzen unsere Werte ein, und stellen um. Es sind also circa siebenundvierzig Höhenmeter! Ganz schön sportlich! Während es bergauf geht, fassen wir nochmal zusammen. Wenn wir mit Sinus, Cosinus und Tangens im rechtwinkligen Dreieck rechnen, sollten wir uns zuerst immer klar machen, um welche Dreiecksseiten es sich bei den gegebenen und gesuchten Größen handelt. Denn nur so können wir uns sicher sein, welche der drei Formeln wir für unsere Rechnung benötigen. Anschließend müssen wir dann nur noch die gegebenen Werte einsetzen und die Gleichung nach der gesuchten Größe umstellen. Wenn wir mit Hilfe von zwei Seitenlängen eine Winkelgröße berechnen sollen, müssen wir daran denken, die jeweilige Umkehrfunktion von Sinus, Cosinus und Tangens auf unserem Taschenrechner zu verwenden. Am wichtigsten ist es aber, die Seiten im rechtwinkligen Dreieck richtig zuzuordnen. Wenn wir das einmal geschafft haben und so die passende Formel ausgewählt haben, geht es für den Rest der Rechnung ganz entspannt bergab. In diesem Sinne: volle Fahrt voraus!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.062

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.877

Lernvideos

44.141

Übungen

38.833

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden