Flächeninhalt eines Dreiecks als Funktion eines Innenwinkels
Lerne, wie du den Flächeninhalt eines Dreieckes mit dem Sinus berechnest. Du kennst die klassische Formel für den Flächeninhalt eines Dreiecks, aber wie berechnet man ihn, wenn die Höhe fehlt? Mit zwei Seitenlängen und dem eingeschlossenen Winkel kannst du es trotzdem schaffen. Interessiert? Erfahre mehr im folgenden Text!
- Berechnung des Flächeninhalts eines Dreiecks – Einführung
- Hilfsmittel – Flächeninhalt eines Parallelogramms
in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Trigonometrie – Einführung

Sinus – Definition

Cosinus und Tangens – Definition

Trigonometrische Berechnungen am rechtwinkligen Dreieck

Sinus, Cosinus und Tangens – Anwendungsaufgaben

Hypotenuse berechnen

Sinus und Cosinus am Einheitskreis

Tangens am Einheitskreis

Flächeninhalt eines Dreiecks als Funktion eines Innenwinkels

Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck

Flächenformel des regelmäßigen n-Ecks

Trigonometrischer Pythagoras

Sinus, Cosinus und Tangens am Einheitskreis – Beispiele
Flächeninhalt eines Dreiecks als Funktion eines Innenwinkels Übung
-
Ergänze die Herleitung der Formel für den Flächeninhalt eines Dreiecks als Funktion eines Innenwinkels.
TippsHier siehst du ein Quadrat. Wenn du ein rechtwinkliges und gleichschenkliges Dreieck durch ein kongruentes Dreieck ergänzt, erhältst du ein Quadrat.
Sicher ist der Flächeninhalt des Dreiecks kleiner als der des Vierecks.
Du kennst die folgende Formel für den Flächeninhalt eines Dreiecks:
$A_{\triangle}=\frac12\cdot a\cdot h_a$.
Verwende $\sin(\gamma)=\frac{h_a}b$.
LösungHier siehst du ein Parallelogramm. Dieses erhältst du, wenn du das gegebene Dreieck durch ein kongruentes Dreieck ergänzt.
Da der Flächeninhalt des Parallelogramms das Doppelte des Flächeninhaltes des Dreiecks ist, kannst du folgern: Der Flächeninhalt des Dreiecks ist die Hälfte des Flächeninhaltes des Parallelogramms.
Verwende die Formel für das Parallelogramm: $A_{\text{Parallelogramm}}=a\cdot b\cdot \sin(\alpha)$.
Damit ist $A_{\triangle}=\frac12\cdot a\cdot b\cdot \sin(\gamma)$.
-
Gib die Formel für den Flächeninhalt $A_{\triangle}$ bei speziellen Winkeln an.
TippsVerwende die speziellen Werte für trigonometrische Funktionen aus diesem Tabellenausschnitt. Achte darauf, dass du die Sinuswerte verwendest.
Du musst jeweils $\sin(\gamma)$ durch den speziellen Wert ersetzen und den Term so weit wie möglich vereinfachen.
Ach ja: $\sin(90^\circ)=1$.
LösungHier siehst du einen Ausschnitt aus einer Tabelle für spezielle Werte von trigonometrischen Funktionen. Was hier nicht zu sehen ist, ist der Sinuswert $\sin(90^\circ)=1$.
Nun kannst du die Formel $A_{\triangle}=\frac12\cdot a\cdot b\cdot\sin(\gamma)$ für spezielle Winkel untersuchen:
- $\gamma=30^\circ$ führt zu $A_{\triangle}=\frac12\cdot a\cdot b\cdot\frac12=\frac14\cdot a\cdot b$.
- $\gamma=45^\circ$ führt zu $A_{\triangle}=\frac12\cdot a\cdot b\cdot\frac12\cdot \sqrt2=\frac14\cdot\sqrt2\cdot a\cdot b$.
- $\gamma=60^\circ$ führt zu $A_{\triangle}=\frac12\cdot a\cdot b\cdot\frac12\cdot \sqrt3=\frac14\cdot\sqrt3\cdot a\cdot b$.
- $\gamma=90^\circ$ führt zu $A_{\triangle}=\frac12\cdot a\cdot b\cdot1=\frac12\cdot a\cdot b$.
-
Berechne den Flächeninhalt des Dreiecks.
TippsVerwende $\sin(30^\circ)=\frac12$.
Setze die bekannten Größen ein.
Das Ergebnis ist eine Dezimalzahl mit einer Nachkommastelle.
LösungVerwende die Formel $A_{\triangle}=\frac12\cdot a\cdot b\cdot \sin(\gamma)$.
In diesem Dreieck sind:
- $a=15~\text{cm}$ und $b=10~\text{cm}$ (Die Reihenfolge ist für die Berechnung nicht von Bedeutung.) sowie
- $\gamma=30^\circ$.
$\begin{array}{rclll} A_{\triangle}&=&\frac12\cdot 15~\text{cm}\cdot 10~\text{cm}\cdot \sin(30^\circ)&|&\sin(30^\circ)=\frac12\\ &=&\frac12\cdot 150~\text{cm}^2\cdot \frac12\\ &=&\frac14\cdot 150~\text{cm}^2\\ &=&37,5~\text{cm}^2 \end{array}$
-
Leite die fehlende Seitenlänge her.
TippsVerwende die Formel $A_{\triangle}=\frac12\cdot a\cdot b\cdot \sin(\gamma)$.
Setze den bekannten Flächeninhalt sowie $a$ und $\gamma$ ein.
Es ist $\sin(60^\circ)=\frac12\cdot \sqrt 3$.
LösungIn diesem Dreieck ist die Länge der Seite $a=20~\text{cm}$ sowie der Winkel $\gamma=60^\circ$ bekannt. Gesucht ist die Länge der Seite $b$. Da auch der Flächeninhalt $A_{\triangle}=260\cdot\sqrt2~\text{cm}^2$ gegeben ist, kannst du durch Umstellen der Flächeninhaltsformel die Seitenlänge ermitteln.
Du verwendest nun $\sin(60^\circ)=\frac12\cdot\sqrt3$ und erhältst für den Flächeninhalt $A_{\triangle}=\frac14\cdot\sqrt3\cdot a\cdot b$.
Setze nun die bekannten Größen ein und forme um:
$\begin{array}{rclll} 260\cdot\sqrt3~\text{cm}^2&=&\frac14\cdot\sqrt3\cdot 20~\text{cm}\cdot b\\ &=&\sqrt3\cdot 5~\text{cm}\cdot b&|&:5~\text{cm}\\ 52\cdot\sqrt3~\text{cm}&=&\sqrt3\cdot b&|&:\sqrt 3\\ 52~\text{cm}&=&b \end{array}$
-
Beschreibe, welcher besondere Fall bei $\gamma=90^\circ$ vorliegt.
TippsDer Flächeninhalt eines Rechtecks mit den Seitenlängen $a$ und $b$ beträgt $A_{\text{Rechteck}}=a\cdot b$.
Wenn du ein Rechteck entlang einer Diagonalen aufschneidest, erhältst du zwei kongruente Dreiecke.
In einem rechtwinkligen Dreieck liegt die Hypotenuse dem rechten Winkel gegenüber. Die beiden Katheten schließen den rechten Winkel ein.
LösungWenn $\gamma=90^\circ$ ist, dann erhältst du mit $\sin(90^\circ)$ für den Flächeninhalt des Dreiecks $A_{\triangle}=\frac12\cdot a\cdot b$.
Fällt dir etwas auf?
- Das Dreieck ist rechtwinklig. Der rechte Winkel wird von den Seiten $a$ und $b$ eingeschlossen.
- Das Dreieck ist die Hälfte eines Rechtecks mit den Seitenlängen $a$ und $b$.
- Der Flächeninhalt des Rechtecks ist $A_{\text{Rechteck}}=a\cdot b$.
-
Ermittle die jeweiligen Flächeninhalte.
TippsIn diesem Tabellenausschnitt siehst du verschiedene Sinuswerte für bestimmte Winkel.
Alle einzutragenden Werte sind ganzzahlig.
Du kannst zu jedem der speziellen Winkel ausgehend von der Formel $A_{\triangle}=\frac12\cdot a\cdot b\cdot\sin(\gamma)$ eine spezielle Formel angeben.
Anhand der Längenangaben bei $\triangle_2$ und $\triangle_3$ kannst du schon erkennen, welche Formel du verwenden kannst.
LösungZu verschiedenen speziellen Winkeln sollst du nun Flächeninhalte berechnen:
$\triangle_1$: $a=b=16~\text{cm}^2$ und $\gamma=30^\circ$
- Verwende $\sin(30^\circ)=\frac12$ und somit $A_{\triangle_1}=\frac14\cdot a\cdot b$.
- Setze die bekannten Größen ein $A_{\triangle_1}=\frac14\cdot 16~\text{cm}\cdot 16~\text{cm}=64~\text{cm}^2$.
- Es ist $\sin(45^\circ)=\frac12\cdot\sqrt2$. So erhältst du $A_{\triangle_2}=\frac14\cdot \sqrt 2\cdot a\cdot b$.
- Setze auch hier die bekannten Größen ein $A_{\triangle_2}=\frac14\cdot \sqrt 2\cdot 16~\text{cm}\cdot 5\cdot\sqrt 2~\text{cm}=\frac12\cdot 80~\text{cm}^2=40~\text{cm}^2$.
- Mit $\sin(60^\circ)=\frac12\cdot \sqrt 3$ kommst du zu der Formel $A_{\triangle_3}=\frac14\cdot \sqrt 3\cdot a\cdot b$.
- Damit erhältst du $A_{\triangle_3}=\frac14\cdot \sqrt 3\cdot 16\cdot \sqrt 3~\text{cm}\cdot 12~\text{cm}=\frac34\cdot 192~\text{cm}^2=144~\text{cm}^2$.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt