Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Sinus, Cosinus und Tangens am Einheitskreis – Beispiele

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 34 Bewertungen
Die Autor*innen
Avatar
Thekla Haemmerling
Sinus, Cosinus und Tangens am Einheitskreis – Beispiele
lernst du in der 9. Klasse - 10. Klasse

Sinus, Cosinus und Tangens am Einheitskreis – Beispiele Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Sinus, Cosinus und Tangens am Einheitskreis – Beispiele kannst du es wiederholen und üben.
  • Bestimme näherungsweise die Werte des Sinus, Kosinus und Tangens von $45^\circ$.

    Tipps

    Mache dir zunächst klar, was Sinus, Kosinus und Tangens sind.

    Wenn der eine Winkel in einem rechtwinkligen Dreieck $45^\circ$ beträgt, so muss dies auch für den anderen spitzen Winkel gelten.

    Sowohl das kleine als auch das große Dreieck sind gleichschenklig.

    Lösung

    An dem Einheitskreis kann man die Werte für Sinus, Kosinus und Tangens näherungsweise bestimmen:

    Der Sinus ist die Gegenkathete in dem kleinen Dreieck, blau eingezeichnet.

    Der Wert liegt zwischen $0,6$ und $0,8$, recht genau in der Mitte, also ist $\sin(45^\circ)\approx 0,7$. Der Taschenrechner liefert den genauen Wert

    $\sin(45^\circ)=\frac{\sqrt2}2\approx0,707$.

    Kosinus: Da für $\alpha=45^\circ$ auch der fehlende andere spitze Winkel $45^\circ$ nach dem Winkelsummensatz betragen muss, ist das Dreieck gleichschenklig und somit $\cos(45^\circ)\approx 0,7$. Dies kann man auch in der Skizze ablesen. Der Taschenrechner liefert den genauen Wert

    $\cos(45^\circ)=\frac{\sqrt2}2\approx0,707$.

    Tangens Der Tangens ist recht gut zu erkennen $\tan(45^\circ)=1$.

    Übrigens: Es gilt $\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$.

  • Bestimme Sinus, Kosinus und Tangens von $90^\circ$, sofern möglich.

    Tipps

    Der Kosinus des Winkels ist im Einheitskreis die Ankathete des Winkels. Überlege dir, wie sich die Ankathete verändert, wenn der Winkel immer größer und schließlich $90^\circ$ wird.

    Für jeden Punkt $P(x|y)$ auf dem Einheitskreis gilt $x^2+y^2=1$.

    Stelle dir vor, dass $\alpha$ immer größer wird und schließlich $90^\circ$ beträgt. Dann wird die Gegenkathete in dem großen Dreieck immer länger.

    Lösung

    Man kann mithilfe des Einheitskreises auch Sinus, Kosinus und Tangens von nicht spitzen Winkeln berechnen. Zum Beispiel für den Winkel $90^\circ$:

    $90^\circ$: Wenn der Winkel $\alpha$ immer größer und schließlich $90^\circ$ wird, wird die Gegenkathete immer größer und schließlich $1$. Das bedeutet, dass $\sin(90^\circ)=1$ ist. Umgekehrt wird die Ankathete immer kürzer und schließlich $0$. Also ist $\cos(90^\circ)=0$. Der Tangens, die Gegenkathete in dem größeren Dreieck, wird immer größer und geht gegen unendlich. Das bedeutet, dass der Tangens für $90^\circ$ nicht bestimmt werden kann.

  • Vervollständige die Tabelle der Sinus-, Kosinus- und Tangenswerte.

    Tipps

    Zeichne dir einen Einheitskreis und überlege, was mit der Gegen- und Ankathete geschieht, wenn der Winkel $\alpha$ immer näher gegen die beiden Winkel $180^\circ$ und $270^\circ$ geht.

    Beachte auch das Vorzeichen.

    Für jeden Punkt $P(x|y)$ auf dem Rand des Einheitskreises gilt

    $x^2+y^2=1$.

    Wenn der Sinus den Wert $0$ hat, hat auch der Tangens den Wert $0$.

    Wenn der Kosinus den Wert $0$ hat, ist der Tangens nicht definiert (n.d.).

    Lösung

    Ähnlich wie für die beiden Winkel $0^\circ$ sowie $90^\circ$ kann man bei $180^\circ$ und $270^\circ$ argumentieren. Die Werte für $360^\circ$ sind ja bereits eingetragen und ergeben sich daraus, dass $360^\circ$ dem Winkel $0^\circ$ entspricht, da der Winkel im gesamten Kreis $360^\circ$ beträgt.

    $180^\circ$: Wenn der Winkel $\alpha$ größer als $90^\circ$ wird und gegen $180^\circ$ läuft, wird die Gegenkathete immer kleiner und schließlich $0$. Das bedeutet, dass $\sin(180^\circ)=0$ ist. Umgekehrt wird die Ankathete immer länger, im negativen Bereich, und schließlich $-1$. Dies kann man sicher nicht mehr als Länge der Gegenkathete verstehen. Also ist $\cos(180^\circ)=-1$. Da der Tangens die Gegenkathete in dem größeren Dreieck ist, ist auch $\tan(180^\circ)=0$.

    $270^\circ$: Wenn der Winkel $\alpha$ noch größer und schließlich $270^\circ$ wird, wird die Ankathete wieder kleiner und schließlich $0$. Das bedeutet, dass $\cos(270^\circ)=0$ ist. Umgekehrt wird die Gegenkathete immer länger, im negativen Bereich, und schließlich $-1$. Auch dies ist wiederum nicht als Länge der Gegenkathete zu verstehen. Also ist $\sin(270^\circ)=-1$. Der Tangens, die Gegenkathete in dem größeren Dreieck, wird immer größer, im negativen Bereich, und geht gegen negativ unendlich. Das bedeutet, dass der Tangens für $270^\circ$ nicht bestimmt werden kann.

  • Arbeite die näherungsweisen Werte für Sinus, Kosinus und Tangens von $60^\circ$ heraus.

    Tipps

    Der Sinus ist die Gegenkathete und der Kosinus die Ankathete.

    Du kannst überprüfen, ob das Quadrat des Sinuswertes und das des Kosinuswertes addiert (ungefähr) $1$ ergeben, da der Punkt, der diese Koordinaten besitzt, auf dem Einheitskreis liegt.

    Der Tangens kann auch wie folgt bestimmt werden:

    $\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$.

    Lösung

    Zunächst macht man sich klar, welche der Seiten in welchem Dreieck dem Sinus, welche dem Kosinus und welche dem Tangens entsprechen:

    Sinus: Dies ist die Gegenkathete in dem kleinen Dreieck, blau eingezeichnet.

    Der Wert liegt knapp unter $0,9$, also zwischen $0,8$ und $1$. Somit ist $\sin(60^\circ)\approx 0,9$. Der Taschenrechner liefert den genauen Wert

    $\sin(60^\circ)=0,866$.

    Kosinus: Auch dieser kann abgelesen werden mit $\cos(60^\circ)\approx 0,5$.

    Dies ist auch der exakte Wert, welchen der Taschenrechner ausgibt.

    Tangens: Der Tangens ist die Gegenkathete in dem großen Dreieck: Diese kann ebenfalls abgelesen werden mit $\tan(60^\circ)\approx 1,7$.

    Der Taschenrechner gibt hier den exakten Wert $\tan(\alpha)=1,732$ aus.

    Übrigens: Es gilt $\tan(\alpha)=\frac{\sin(\alpha)}{\cos(\alpha)}$.

  • Gib an, wie Sinus, Kosinus und Tangens definiert sind.

    Tipps

    Merke dir: Sowohl in der Definition des Sinus als auch des Kosinus kommt die Hypotenuse vor.

    In der Definition des Tangens kommen die beiden Katheten vor.

    Lösung

    In einem rechtwinkligen Dreieck sind für einen spitzen Winkel $\alpha$ der Sinus, der Kosinus und der Tangens wie folgt definiert:

    1. $\sin(\alpha)=\frac{\text{Gegenkathete von }\alpha}{\text{Hypotenuse}}$
    2. $\cos(\alpha)=\frac{\text{Ankathete von }\alpha}{\text{Hypotenuse}}$
    3. $\tan(\alpha)=\frac{\text{Gegenkathete von }\alpha}{\text{Ankathete von }\alpha}$
    Ebenso können diese Funktionen für den Winkel $\beta$ definiert werden.

  • Untersuche die folgenden Zusammenhänge zwischen Sinus und Kosinus.

    Tipps

    Für jeden der Punkte $P(x|y)$ auf dem Einheitskreis gilt nach dem Satz des Pythagoras $x^2+y^2=1$.

    Der Tangens wird immer größer, je größer der Winkel $\alpha$ wird.

    Das rechtwinklige Dreieck, dessen Katheten der Sinus und der Kosinus sind, befindet sich komplett innerhalb des Einheitskreises. Dabei ist ein Eckpunkt des Dreiecks der Mittelpunkt des Einheitskreises.

    Lösung

    Da der Sinus und der Kosinus des Winkels $\alpha$ die Katheten in einem rechtwinkligen Dreieck mit der Hypotenuse $r=1$ sind, gilt nach dem Satz des Pythagoras:

    $\sin^2(\alpha)+\cos^2(\alpha)=1$.

    Dies ist der sogenannte „trigonometrische Pythagoras“.

    Da sowohl der Sinus als auch der Kosinus Katheten eines rechtwinkligen Dreiecks sind (wie in dem Bild zu erkennen), welches komplett innerhalb des Einheitskreises liegt, kann man folgern,

    • dass sowohl der Sinus
    • als auch der Kosinus immer kleiner oder gleich $1$ sind.
    • Dies gilt für den Tangens nicht.
    Ganz allgemein kann man die Wertebereiche der Funktionen wie folgt angeben:
    • $\mathbb W_{\sin}=[-1;1]$
    • $\mathbb W_{\cos}=[-1;1]$
    • $\mathbb W_{\tan}=[-\infty;\infty]$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.090

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.998

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden