Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Schrägbild des Zylinders

Das Zeichnen des Schrägbildes eines Zylinders ist einfach! Erfahre, wie man das Schrägbild eines Zylinders erstellt, indem man die Ellipse als Grundfläche zeichnet und die Höhe einbezieht. In dem Video bekommst du eine klare Anleitung und Zugang zu zusätzlichen Übungen. Interessiert? Das und mehr kannst du im folgenden Text entdecken!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Schrägbild des Zylinders

Wie sieht ein Zylinder aus der Vorderansicht aus?

1/5
Bewertung

Ø 4.2 / 57 Bewertungen
Die Autor*innen
Avatar
Team Digital
Schrägbild des Zylinders
lernst du in der 5. Klasse - 6. Klasse

Schrägbild des Zylinders Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Schrägbild des Zylinders kannst du es wiederholen und üben.
  • Tipps

    Die Grundfläche eines Zylinders ist immer ein Kreis. Im Schrägbild wird diese gestaucht.

    Ein Prisma ähnelt einem Zylinder, hat aber ein Vieleck als Grundfläche. Ein Prisma ist kein Zylinder.

    Bei einem Zylinder gleicht die Deckfläche der Grundfläche komplett.

    Lösung

    Die wichtigsten Eigenschaften des Schrägbildes eines Zylinders sind:

    1. Die kreisförmige Grundfläche des Zylinders wird im Schrägbild gestaucht, sodass eine Ellipse entsteht.
    2. Die Höhe wird senkrecht zur Grundfläche von den Endpunkten des Durchmessers abgetragen.
    3. Bei einem Zylinder gleicht die Deckfläche der Grundfläche vollkommen.
    Damit sind die folgenden Bilder Schrägbilder von Zylindern:
    • 2. Bild
    • 3. Bild
    Die folgenden Bilder sind keine Schrägbilder von Zylindern:
    • 1. Bild
    Die Deckfläche entspricht nicht der Grundfläche, sondern bildet eine Spitze. Hierbei handelt es sich um einen Kegel.

    • 4. Bild
    Die kreisförmige Grundfläche des Zylinders wird im Schrägbild gestaucht, sodass eine Ellipse entsteht. Hier ist die Grundfläche ein Fünfeck, der Körper ist also ein Prisma.
    • 5. Bild
    Die kreisförmige Grundfläche des Zylinders wird im Schrägbild gestaucht, sodass eine Ellipse entsteht. Hier ist die Grundfläche ein Halbkreis, der Körper ist also ein Halbzylinder.
  • Tipps

    Beginne mit der Grundfläche und arbeite dich nach oben vor.

    Im Schrägbild ist die Grundfläche eines Zylinders eine Ellipse.

    Die Grund- und Deckfläche sind gleich, sie sind nur verschoben.

    Lösung

    So kannst du das Schrägbild eines Zylinders zeichnen:

    1. Beginne mit der Grundfläche. Zeichne dazu den Durchmesser als waagerechte Linie.
    2. Zeichne durch den Mittelpunkt eine zweite Linie im Winkel von $45^\circ$: einen verkürzten Durchmesser.
    3. Verbinde die Endpunkte zu einer Ellipse. Das ist die Grundfläche des Zylinders. Die hintere Hälfte von dieser wird gestrichelt, da sie nicht sichtbar ist.
    4. Trage die Höhen senkrecht an den Endpunkten des ersten Durchmessers ab.
    5. Zeichne die Deckfläche des Zylinders. Diese ist die gleiche Ellipse wie die Grundfläche.
  • Tipps

    Ein Kegel ist kein Zylinder, da die Deckfläche nicht der Grundfläche entspricht.

    Die Grundfläche eines Zylinders ist im Original immer ein Kreis. Im Schrägbild wird diese zu einer Ellipse gestaucht.

    Lösung

    So gehst du beim Zeichnen des Schrägbildes eines Zylinders vor:

    1. Zeichne den Durchmesser als waagerechte Linie.
    2. Zeichne durch den Mittelpunkt eine zweite Linie im Winkel von $45^\circ$.
    3. Verbinde die Endpunkte zu einer Ellipse. Das ist die Grundfläche des Zylinders. Die hintere Hälfte von dieser wird gestrichelt, da sie nicht sichtbar ist.
    4. Trage die Höhe senkrecht an den Endpunkten des Durchmessers ab.
    5. Zeichne die Deckfläche des Zylinders. Diese ist die gleiche Ellipse wie die Grundfläche.
    Hier sind die folgenden Fehler passiert:

    • 1. Bild: Spitze statt Ellipse
    Die Deckfläche ist eine Spitze statt einer Ellipse. Es handelt sich hier also um einen Kegel und keinen Zylinder.
    • 2. Bild: unsichtbare Kanten
    Die Grundfläche eines Zylinders im Schrägbild ist eine Ellipse. Die hintere Hälfte von dieser wird gestrichelt, da sie nicht sichtbar ist. Dennoch muss sie aber gekennzeichnet werden.
    • 3. Bild: kein Fehler
    Hier ist alles korrekt gekennzeichnet.
    • 4. Bild: Grundfläche Vieleck
    Die Grundfläche des Zylinders ist ein Kreis. Im Schrägbild ist dieser zu einer Ellipse gestaucht. Die Grundfläche eines Zylinders ist aber niemals ein Vieleck (in diesem Fall Fünfeck). Daher handelt es sich hierbei um ein Prisma.
  • Tipps

    Der Durchmesser beträgt $d=3\text{ cm}$, also $6$ Kästchen, und die Höhe $h=3\text{ cm}$, also $6$ Kästchen.

    Wichtig ist, dass du für den Durchmesser die längste Sehne des Zylinders nimmst. Diese ist hier sehr gut zu erkennen, da sie die waagerechte Linie ist.

    Lösung

    Um die Schrägbilder eindeutig zuzuordnen, musst du den Durchmesser $d$ und die Höhe $h$ bestimmen.

    • 1. Bild
    Der Durchmesser beträgt $5\text{ cm}$, also $10$ Kästchen, und die Höhe $4\text{ cm}$, also $8$ Kästchen.
    • 2. Bild
    Der Durchmesser beträgt $5\text{ cm}$, also $10$ Kästchen, und die Höhe $5\text{ cm}$, also $10$ Kästchen.
    • 3. Bild
    Der Durchmesser beträgt $4\text{ cm}$, also $8$ Kästchen, und die Höhe $4\text{ cm}$, also $8$ Kästchen.
    • 4. Bild
    Der Durchmesser beträgt $5\text{ cm}$, also $10$ Kästchen, und die Höhe $3\text{ cm}$, also $6$ Kästchen.
  • Tipps

    Hier siehst du das korrekt gezeichnete Schrägbild eines Zylinders.

    In jedem Schrägbild werden nicht sichtbare Kanten gestrichelt, um einen räumlichen Effekt zu erzeugen.

    Die Grund- und Deckfläche eines Zylinders sind Kreise, im Schrägbild werden diese gestaucht.

    Lösung

    • Die Grund- und Deckfläche des Schrägbildes eines Zylinders sind gestauchte Kreise, also Ellipsen.
    Die Grund- und Deckfläche eines Zylinders sind Kreise, im Schrägbild werden diese gestaucht.

    • Die Höhe im Originalzylinder ist auch im Schrägbild senkrecht zur Grundfläche.
    Die Höhen werden links und rechts senkrecht zur längsten Sehne der Ellipse eingezeichnet.

    • Die Deckfläche des Zylinders ist gleich der Grundfläche.
    Dies gilt sowohl im Original als auch im Schrägbild.

    • Bei der Grundfläche wird die hintere Hälfte der Ellipse gestrichelt, da sie durch die Mantelfläche verdeckt wird.
    In jedem Schrägbild werden nicht sichtbare Kanten gestrichelt, um einen räumlichen Effekt zu erzeugen.

  • Tipps

    Ein Würfel ist ein spezieller Quader, bei dem alle Seiten gleich lang sind.

    Sowohl der Zylinder als auch der Kegel haben eine runde Grundfläche.

    Lösung

    Im Bild siehst du die wichtigsten Körper abgebildet. Konkret galt hier für die Bilder:

    • Bild 1: Zylinder
    Der Zylinder hat im Schrägbild eine Ellipse als Grundfläche, die an der breitesten Stelle dem Durchmesser des Kreises entspricht. Von den Enden des Durchmessers wird dann die Höhe abgetragen und oben erneut die Ellipse gezeichnet.

    • Bild 2: Quader
    Der Quader hat ein Rechteck als Vorderfläche. Von den Eckpunkten aus gehen die Kanten schräg und verkürzt nach hinten. Deren Endpunkte werden zu dem gleichen Rechteck verbunden wie die Vorderseite.

    • Bild 3: Pyramide
    Du siehst eine Pyramide mit fünfeckiger Grundfläche: Die Höhe wird vom Mittelpunkt der Grundfläche aus gezeichnet und dann die Spitze mit allen Kanten verbunden.

    • Bild 4: Kegel
    Hier siehst du einen Kegel mit einer Ellipse als Grundfläche im Schrägbild (Original wäre diese ein Kreis): Die Höhe wird vom Mittelpunkt der Grundfläche aus gezeichnet und dann die Spitze mit den beiden Seiten verbunden.

    • Bild 5: Prisma
    Dieses Prisma hat ein Dreieck als Vorderfläche. Von den Eckpunkten aus gehen die Kanten schräg und verkürzt nach hinten. Deren Endpunkte werden zu dem gleichen Dreieck verbunden wie die der Vorderseite.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 1,6 Millionen Schüler*innen nutzen sofatutor Über 1,6 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen