Schrägbild des Zylinders
Das Zeichnen des Schrägbildes eines Zylinders ist einfach! Erfahre, wie man das Schrägbild eines Zylinders erstellt, indem man die Ellipse als Grundfläche zeichnet und die Höhe einbezieht. In dem Video bekommst du eine klare Anleitung und Zugang zu zusätzlichen Übungen. Interessiert? Das und mehr kannst du im folgenden Text entdecken!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Schrägbild des Zylinders Übung
-
Bestimme die richtigen Schrägbilder von Zylindern.
TippsDie Grundfläche eines Zylinders ist immer ein Kreis. Im Schrägbild wird diese gestaucht.
Ein Prisma ähnelt einem Zylinder, hat aber ein Vieleck als Grundfläche. Ein Prisma ist kein Zylinder.
Bei einem Zylinder gleicht die Deckfläche der Grundfläche komplett.
LösungDie wichtigsten Eigenschaften des Schrägbildes eines Zylinders sind:
- Die kreisförmige Grundfläche des Zylinders wird im Schrägbild gestaucht, sodass eine Ellipse entsteht.
- Die Höhe wird senkrecht zur Grundfläche von den Endpunkten des Durchmessers abgetragen.
- Bei einem Zylinder gleicht die Deckfläche der Grundfläche vollkommen.
- 2. Bild
- 3. Bild
- 1. Bild
- 4. Bild
- 5. Bild
-
Zeige die Schritte beim Zeichnen eines Schrägbildes auf.
TippsBeginne mit der Grundfläche und arbeite dich nach oben vor.
Im Schrägbild ist die Grundfläche eines Zylinders eine Ellipse.
Die Grund- und Deckfläche sind gleich, sie sind nur verschoben.
LösungSo kannst du das Schrägbild eines Zylinders zeichnen:
- Beginne mit der Grundfläche. Zeichne dazu den Durchmesser als waagerechte Linie.
- Zeichne durch den Mittelpunkt eine zweite Linie im Winkel von $45^\circ$: einen verkürzten Durchmesser.
- Verbinde die Endpunkte zu einer Ellipse. Das ist die Grundfläche des Zylinders. Die hintere Hälfte von dieser wird gestrichelt, da sie nicht sichtbar ist.
- Trage die Höhen senkrecht an den Endpunkten des ersten Durchmessers ab.
- Zeichne die Deckfläche des Zylinders. Diese ist die gleiche Ellipse wie die Grundfläche.
-
Gib an, ob und welche Fehler beim Zeichnen des Schrägbildes des Zylinders passiert sind.
TippsEin Kegel ist kein Zylinder, da die Deckfläche nicht der Grundfläche entspricht.
Die Grundfläche eines Zylinders ist im Original immer ein Kreis. Im Schrägbild wird diese zu einer Ellipse gestaucht.
LösungSo gehst du beim Zeichnen des Schrägbildes eines Zylinders vor:
- Zeichne den Durchmesser als waagerechte Linie.
- Zeichne durch den Mittelpunkt eine zweite Linie im Winkel von $45^\circ$.
- Verbinde die Endpunkte zu einer Ellipse. Das ist die Grundfläche des Zylinders. Die hintere Hälfte von dieser wird gestrichelt, da sie nicht sichtbar ist.
- Trage die Höhe senkrecht an den Endpunkten des Durchmessers ab.
- Zeichne die Deckfläche des Zylinders. Diese ist die gleiche Ellipse wie die Grundfläche.
- 1. Bild: Spitze statt Ellipse
- 2. Bild: unsichtbare Kanten
- 3. Bild: kein Fehler
- 4. Bild: Grundfläche Vieleck
-
Entscheide, welche Schrägbilder zu den Maßen passen.
TippsDer Durchmesser beträgt $d=3\text{ cm}$, also $6$ Kästchen, und die Höhe $h=3\text{ cm}$, also $6$ Kästchen.
Wichtig ist, dass du für den Durchmesser die längste Sehne des Zylinders nimmst. Diese ist hier sehr gut zu erkennen, da sie die waagerechte Linie ist.
LösungUm die Schrägbilder eindeutig zuzuordnen, musst du den Durchmesser $d$ und die Höhe $h$ bestimmen.
- 1. Bild
- 2. Bild
- 3. Bild
- 4. Bild
-
Gib die Eigenschaften von Schrägbildern von Zylindern an.
TippsHier siehst du das korrekt gezeichnete Schrägbild eines Zylinders.
In jedem Schrägbild werden nicht sichtbare Kanten gestrichelt, um einen räumlichen Effekt zu erzeugen.
Die Grund- und Deckfläche eines Zylinders sind Kreise, im Schrägbild werden diese gestaucht.
Lösung- Die Grund- und Deckfläche des Schrägbildes eines Zylinders sind gestauchte Kreise, also Ellipsen.
- Die Höhe im Originalzylinder ist auch im Schrägbild senkrecht zur Grundfläche.
- Die Deckfläche des Zylinders ist gleich der Grundfläche.
- Bei der Grundfläche wird die hintere Hälfte der Ellipse gestrichelt, da sie durch die Mantelfläche verdeckt wird.
-
Ermittle, von welchen Körpern hier Schrägbilder gezeichnet wurden.
TippsEin Würfel ist ein spezieller Quader, bei dem alle Seiten gleich lang sind.
Sowohl der Zylinder als auch der Kegel haben eine runde Grundfläche.
LösungIm Bild siehst du die wichtigsten Körper abgebildet. Konkret galt hier für die Bilder:
- Bild 1: Zylinder
- Bild 2: Quader
- Bild 3: Pyramide
- Bild 4: Kegel
- Bild 5: Prisma
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.225
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt