Schrägbild der Pyramide
Erfahre, wie man das Schrägbild einer Pyramide in der Mathematik erstellt. Mit verschiedenen Ansichten und klaren Anleitungen wird das Zeichnen einer stehenden Pyramide einfach erklärt. Interessiert? Das und vieles mehr findest du im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Schrägbild der Pyramide Übung
-
Gib wieder, wie man das Schrägbild einer Pyramide mit quadratischer Grundfläche zeichnet.
TippsBeginne mit der Grundfläche der Pyramide. Beachte dabei, dass nach hinten laufende Kanten verkürzt gezeichnet werden.
Den Mittelpunkt eines Parallelogramms kannst du bestimmen, indem du die gegenüberliegenden Eckpunkte miteinander verbindest und den Schnittpunkt markierst.
Hast du deine Pyramide fertig konstruiert, musst du schauen, welche Kanten im Vordergrund sind und welche möglicherweise durch andere Flächen verdeckt sind. Letztere werden nämlich für den räumlichen Effekt gestrichelt gezeichnet.
Lösung- Zeichne ein Parallelogramm. Dabei werden die nach hinten laufenden Kanten im Winkel von $45^\circ$ und verkürzt gezeichnet.
- Bestimme den Mittelpunkt des Parallelogramms. Dieser ist der Schnittpunkt der beiden Diagonalen des Parallelogramms, die die gegenüberliegenden Eckpunkte verbinden.
- Zeichne die Spitze der Pyramide senkrecht über den Mittelpunkt im Abstand der Höhe. Dabei kannst du dich zum Beispiel gut an den Kästchen deines Matheheftes orientieren.
- Verbinde die Spitze mit den Eckpunkten des Parallelogramms.
- Zum Schluss strichelst du alle nicht sichtbaren Kanten. Das sind die linke und die hintere Seite des Parallelogramms und die Kante, die von der Spitze zum linken hinteren Eckpunkt des Parallelogramms führt.
-
Beschrifte die wichtigen Merkmale des Schrägbildes einer Pyramide.
TippsDie Grundfläche entspricht hier einem Parallelogramm.
Die Spitze wird senkrecht über den Mittelpunkt der Grundfläche im Abstand der Höhe eingezeichnet.
Im letzten Schritt werden alle Kanten, die bei der schrägen Ansicht von anderen Flächen verdeckt werden, gestrichelt gezeichnet.
LösungDie wichtigsten Merkmale des Schrägbildes einer Pyramide mit quadratischer Grundfläche sind:
- Grundfläche
- Diagonalen und Mittelpunkt des Parallelogramms
- Spitze
- Unsichtbare Kanten
-
Zeige auf, welche Schrägbilder zu einer quadratischen Pyramide passen.
TippsBedenke, dass du zuerst die quadratische Grundfläche zeichnen musst. Im Schrägbild entspricht diese einem Parallelogramm.
Ein wichtiger Schritt bei der Zeichnung des Schrägbildes einer Pyramide ist die Spitze, die senkrecht über dem Mittelpunkt der Grundfläche liegt.
LösungDie wichtigsten Schritte beim Zeichnen des Schrägbildes einer quadratischen Pyramide sind folgende:
- Zeichne ein Parallelogramm als Grundfläche, bei dem die nach hinten laufenden Kanten im Winkel von $45^\circ$ verlaufen.
- Bestimme den Mittelpunkt des Parallelogramms. Dieser ist der Schnittpunkt der beiden Diagonalen.
- Zeichne die Spitze senkrecht über den Mittelpunkt im Abstand der Höhe.
- Verbinde die Spitze mit den vier Eckpunkten.
- Zum Schluss strichelst du alle nicht sichtbaren Kanten.
Deshalb gilt für die Schrägbilder:
1. Bild
Das ist kein Schrägbild einer vierseitigen Pyramide: Da die Grundfläche ein Dreieck ist, spricht man von einer Pyramide mit dreieckiger Grundfläche.
2. Bild
Das ist ein Schrägbild einer Pyramide mit quadratischer Grundfläche. Hier wurden alle Punkte beachtet.
3. Bild
Das ist kein Schrägbild einer quadratischen Pyramide: Die Grundfläche ist zwar ein Parallelogramm, jedoch wurde hier keine Spitze senkrecht über dem Mittelpunkt markiert, sondern es wurden zwei Spitzen oberhalb der Mittelpunkte der Seiten gezeichnet und diese verbunden. Stellt man es auf, erhält man ein Prisma mit dreieckiger Grundfläche.
4. Bild
Das ist ein Schrägbild einer quadratischen Pyramide. Hier wurden alle Punkte beachtet.
5. Bild
Das ist kein Schrägbild einer quadratischen Pyramide. Die Grundfläche ist zwar ein Parallelogramm, jedoch sieht man hier einen Quader.
-
Ermittle die passenden Schrägbilder zu den Maßen.
TippsZeichne zuerst ein Parallelogramm. Dabei werden die nach hinten laufenden Kanten im Winkel von $45^\circ$ verkürzt gezeichnet. Also entspricht ein Zentimeter einer Kästchendiagonale.
Die Spitze ist senkrecht über dem Mittelpunkt des Parallelogramms im Abstand der Höhe.
LösungDu kannst wie folgt zuordnen:
- $a=4 \text{ cm}$ und $h=4 \text{ cm}$
- $a=2 \text{ cm}$ und $h=2 \text{ cm}$
- $a=2 \text{ cm}$ und $h=3 \text{ cm}$
- $a=3 \text{ cm}$ und $h=2 \text{ cm}$
- $a=3 \text{ cm}$ und $h=3 \text{ cm}$
-
Bestimme die richtige Reihenfolge für das Erstellen eines Schrägbildes.
TippsDas Schrägbild beginnt immer mit der Grundfläche.
Zeichne zunächst die sichtbaren und dann die unsichtbaren Kanten.
Lösung- Zeichne ein Parallelogramm. Dabei werden die nach hinten laufenden Kanten im Winkel von $45^\circ$ verkürzt gezeichnet. Hier sind schon die beiden später nicht sichtbaren Kanten gestrichelt gezeichnet.
- Bestimme den Mittelpunkt des Parallelogramms. Dieser ist der Schnittpunkt der beiden Diagonalen, die die gegenüberliegenden Eckpunkte des Parallelogramms verbinden.
- Zeichne die Spitze senkrecht über den Mittelpunkt des Parallelogramms im Abstand der Höhe.
- Verbinde die Spitze mit den drei Eckpunkten, die du direkt sehen kannst.
- Zum Schluss zeichnest du die nicht sichtbare Kante zum verbliebenen Eckpunkt gestrichelt.
-
Gib an, wie du das Schrägbild einer Pyramide mit dreieckiger Grundfläche zeichnen kannst.
TippsDas Schrägbild einer Pyramide mit dreieckiger Grundfläche ist sehr ähnlich zu dem der Pyramide mit der quadratischen Grundfläche. Auch hier werden verdeckte Kanten gestrichelt dargestellt.
Hier siehst du die drei Höhen eines Dreiecks. Sie schneiden sich zwar in einem Punkt, dieser liegt aber nicht in der Mitte des Dreiecks.
Hier siehst du ein Dreieck und seine drei Winkelhalbierenden.
LösungDas Schrägbild einer dreieckigen Pyramide ist dem der Pyramide mit der quadratischen Grundfläche sehr ähnlich. Es wird wie folgt angefertigt:
- Zunächst zeichnest du die dreieckige Grundfläche. Die nach hinten laufenden Kanten werden verkürzt dargestellt. Den Winkel, um den die Kanten verschoben werden, nennt man Verzerrwinkel und den Faktor, um den sie verkürzt werden, Verzerrfaktor.
- Danach bestimmen wir den Mittelpunkt des Dreiecks. Dazu zeichnen wir alle $3$ Winkelhalbierenden ein. Der Mittelpunkt der Grundfläche entspricht dann deren Schnittpunkt. Beachte, dass du nur im Falle eines gleichseitigen Dreiecks die Mittelsenkrechten nehmen kannst, da diese dann den Winkelhalbierenden entsprechen.
- Senkrecht zur Grundfläche wird nun die Höhe abgetragen. Sie wird nicht verkürzt oder anderweitig verändert. Am Ende der Höhe markieren wir die Spitze.
- Anschließend verbinden wir die Spitze mit den $3$ Eckpunkten der Grundfläche und erhalten die Pyramide.
- Zuletzt werden die $3$ nicht sichtbaren Kanten gestrichelt dargestellt, da sie von der Vorderseite verdeckt werden.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.224
Lernvideos
38.691
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt