Schrägbild des Würfels
Zeichne Schrägbilder: Verstehe und konstruiere Würfel! Entdecke verschiedene Ansichten eines Würfels, lerne das Zeichnen von Schrägbildern und erfahre mehr über seine Eigenschaften. Bist du bereit für kreative Konstruktionen? Interessiert? All das und vieles mehr findest du im folgenden Video!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Schrägbild des Würfels Übung
-
Zeige die Schritte beim Zeichnen des Schrägbildes eines Würfels auf.
TippsBeginne vorn und arbeite dich nach hinten vor.
Das Schrägbild ist die einzige Möglichkeit, ein räumliches Objekt in der Ebene sinnvoll darzustellen. Dabei werden nicht sichtbare Kanten angedeutet.
LösungDie wichtigen Schritte beim Zeichnen des Schrägbildes eines Würfels sind:
- Zeichne die Vorderfläche. Diese ist ein Quadrat.
- Zeichne nach hinten laufende Kanten schräg und verkürzt ein. Um sie schräg zu zeichnen, wird ein Winkel von $45^\circ$ gewählt. Für die Verkürzung gilt: Eine Kästchendiagonale entspricht $1 \text{ cm}$.
- Verbinde die Endpunkte dieser Kanten zu einem Quadrat. Die Rückfläche ist kongruent zu der Vorderfläche, nur verschoben.
- Nicht sichtbare Kanten, die im Original zum Beispiel durch die Vorderfläche oder Deckfläche verdeckt sind, werden im Schrägbild gestrichelt dargestellt.
-
Benenne die wichtigen Eigenschaften des Schrägbildes eines Würfels.
TippsHier siehst du ein korrekt gezeichnetes Schrägbild eines Würfels.
Die Vorder- und Rückfläche sind Quadrate, alle anderen Flächen Parallelogramme.
Um etwas in der Ebene räumlich darzustellen, deutet man nicht sichtbare Linien meist nur an.
LösungDie wichtigen Schritte beim Zeichnen des Schrägbildes eines Würfels sind:
- Quadratische Vorderfläche zeichnen.
- Nach hinten laufende Kanten zeichnen.
- Endpunkte dieser Kanten zu einem Quadrat verbinden.
Dabei sind die folgenden Eigenschaften eines Schrägbildes stets zu beachten:
- Nicht parallele Kanten im Original sind auch im Schrägbild nicht parallel. Es ändern sich lediglich die Seiten-, Deck- und Grundfläche von Quadraten zu Parallelogrammen.
- Nach hinten verlaufende Kanten werden verkürzt dargestellt. Sie werden in einem Winkel von $45^\circ$ eingezeichnet.
- Gegenüberliegende Seiten, die in Wirklichkeit gleich lang sind, sind auch im Schrägbild immmer gleich lang.
- Unsichtbare Kanten, die zum Beispiel von der Vorder- oder Deckfläche verdeckt werden, werden gestrichelt gezeichnet.
-
Ermittle die Schrägbilder eines Würfels.
TippsNach hinten verlaufende Kanten werden verkürzt und schräg mit einem Winkel von $45^\circ$ gezeichnet.
Bei dem hier abgebildeten Schrägbild müssten die nicht sichtbaren Kanten gestrichelt gezeichnet werden.
LösungDie wichtigsten Eigenschaften beim Schrägbild eines Würfels sind:
- Die Vorderfläche ist ein Quadrat.
- Parallele Kanten im Original sind im Schrägbild auch parallel.
- Nach hinten verlaufende Kanten werden verkürzt dargestellt. $1\text{ cm}$ entspricht hier einer Kästchendiagonalen.
- Gegenüberliegende Seiten, die in Wirklichkeit gleich lang sind, sind auch im Schrägbild immer gleich lang.
- Unsichtbare Kanten werden gestrichelt gezeichnet, damit das Schrägbild räumlicher wirkt.
Damit sind die folgenden Bilder korrekte Schrägbilder von Würfeln:
- 1. Bild Kantenlänge $1\text{ cm}$
- 4. Bild Kantenlänge $2\text{ cm}$
- 2. Bild
- 3. Bild
- 5. Bild
-
Bestimme die Fehler, die beim Zeichnen der Schrägbilder eines Würfels mit $a=1~\text{cm}$ aufgetreten sind.
TippsBei dem Schrägbild eines Würfels solltest du immer beachten, dass nach hinten laufende Kanten verkürzt sind.
In einem Schrägbild sind genau drei Kanten nicht sichtbar: Diese müssen alle gestrichelt sein.
LösungBei Schrägbildern von Würfeln solltest du immer beachten, dass
- die Vorderfläche quadratisch ist,
- parallele Kanten im Original auch im Schrägbild parallel sind,
- nach hinten laufende Kanten verkürzt sind,
- gegenüberliegende Seiten gleich lang sind und
- unsichtbare Kanten gestrichelt werden.
Die folgenden Fehler haben sich eingeschlichen:
1. Bild
Hier fehlen die drei verdeckten Kanten. Bei der Ansicht eines Würfels sind sie zwar nicht sichtbar, im Schrägbild werden sie aber zumindest angedeutet, damit es räumlich wirkt.
2. Bild
Dieser Würfel ist korrekt gezeichnet.
3. Bild
In einem Schrägbild sind genau drei Kanten nicht sichtbar: Diese müssen alle gestrichelt sein.
4. Bild
Die nach hinten laufenden Kanten werden verkürzt dargestellt, nicht verlängert. Die Breite zweier Kästchen entspricht normalerweise einem Zentimeter. Für die Verkürzung sagt man, dass dann eine Kästchendiagonale einem Zentimeter entspricht. Hier ist daher die Diagonale zu lang.
5. Bild
Die Vorderfläche sollte ein Quadrat sein und kein Rechteck, da alle Kanten eines Würfels gleich lang sind. Hier sieht man einen Quader.
-
Gib die Eigenschaften eines Würfels wieder.
TippsDer Würfel ist ein spezieller Quader, dessen Kanten die gleiche Länge haben.
Bei einem Würfel unterscheiden sich die Draufsicht, die Vorderansicht und die Seitenansicht nicht.
LösungEin Würfel ist ein spezieller Quader. Er hat $8$ Ecken, $6$ gleich große, quadratische Flächen und $12$ gleich lange Kanten.
Sowohl bei der Draufsicht, der Vorderansicht und der Seitenansicht sieht man immer nur eine Begrenzungsfläche. Diese ist ein Quadrat. Nur im Schrägbild nimmt man den Würfel auf der ebenen Fläche räumlich wahr.
-
Worin unterscheiden sich das Schrägbild eines Quaders und das Schrägbild eines Würfels?
TippsHier siehst du ein Parallelogramm.
LösungJeder Würfel ist auch ein Quader, doch nicht jeder Quader ein Würfel. Dies ist ein wichtiger Punkt, um die Aussagen zu betrachten. Da ein Würfel nur ein spezieller Quader ist, lassen sich viele Eigenschaften übertragen, können aber auch präzisiert werden.
Die folgenden Aussagen sind richtig:
- Die Vorderfläche eines Quaders im Schrägbild kann ein Quadrat sein.
- Die Seitenfläche eines Würfels im Schrägbild ist ein Parallelogramm.
Die folgenden Aussagen sind falsch:
- Die Vorderfläche eines Quaders im Schrägbild ist ein Quadrat und die eines Würfels ein Rechteck.
- Die nach hinten laufenden Kanten im Schrägbild werden nur beim Würfel verkürzt.
- Die Deckfläche eines Quaders im Schrägbild ist ein Parallelogramm und die eines Würfels eine Raute.
9.127
sofaheld-Level
6.601
vorgefertigte
Vokabeln
8.060
Lernvideos
37.165
Übungen
33.483
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebeziehungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Raute
- Parallelogramm
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben
- Meter
- Orthogonalität
- Halbschriftliche Division – Übungen