Über 2,1 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Rekonstruktion ganzrationaler Funktionen – Übersicht Eigenschaften

Beim Rekonstruieren von Funktionen ist es wichtig, aus bekannten Eigenschaften den Funktionsterm zu bestimmen. Die Steckbriefaufgabe kann als eine Art "Kurvendiskussion rückwärts" betrachtet werden. Durch die mathematische Umformung von Sachverhalten, zum Beispiel beim Straßenbau, werden Trassierungsaufgaben gelöst. Interessierst du dich dafür? Entdecke dies und vieles mehr im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 18 Bewertungen

Erfahrene Lehrkräfte erstellen und prüfen alle Inhalte bei sofatutor – für eine Qualität, auf die du dich verlassen kannst.

Avatar
sofatutor Team
Rekonstruktion ganzrationaler Funktionen – Übersicht Eigenschaften
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Rekonstruktion ganzrationaler Funktionen – Übersicht Eigenschaften Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Lerntext Rekonstruktion ganzrationaler Funktionen – Übersicht Eigenschaften kannst du es wiederholen und üben.
  • Tipps

    Welche Information bekommst du aus der Aufgabenstellung? Das ist Schritt 1.

    Am Ende lohnt es sich, die erhaltene Lösung noch einmal zu überprüfen.

    Lösung

    Schritt 1

    Stelle den allgemeinen Funktionsterm und die Ableitung(en) auf.

    $f(x)=ax^2+bx+c$

    $f\prime(x)=2ax+b$

    Schritt 2

    Formuliere die im Text gegebenen Aussagen in Form von mathematischen Gleichungen

    $f(0)=0$

    $f(-1)=2$

    $f\prime(-1)=0$

    Schritt 3

    Stelle das LGS auf und löse es.

    $0^2 \cdot a+0 \cdot b+c=0$

    $(-1)^2 \cdot a+ (-1)\cdot b+c=2$

    $2\cdot (-1)\cdot a+(-1)b=0$

    Schritt 4

    Mache die Probe.

    Für die Lösungen $a=-2$, $b=-4$ und $c=0$ des LGS ergibt sich die Funktion

    $f(x)=-2x^2-4x$.

    Diese Funktion verläuft durch den Ursprung und hat ein Maximum bei $P(-1\vert 2)$. Damit sind alle Bedingungen aus der Aufgabe erfüllt.

  • Tipps

    Bei der Extremstelle einer Funktion hat die erste Ableitung eine Nullstelle.

    Wenn der Funktionsgraph die $x$-Achse berührt (und nicht schneidet), dann hat der Graph an dieser Stelle eine Extremstelle.

    Lösung

    Funktion $f$

    Der Graph von $f$ hat einen Hochpunkt bei $P(2\vert7)$.

    $f(2)=7$ und $f'(2)=0$.

    Funktion $g$

    Der Graph $g$ berührt die $x$-Achse im Ursprung.

    $g(0)=0$ und $g'(0)=0$.

  • Tipps

    Die aus der Kurvendiskussion bekannten notwendigen Bedingungen für Extrem-, Wende- und Sattelpunkten kannst du hier "rückwärts" anwenden, um eine Aussage in die mathematische Gleichung zu übersetzen.

    Lösung

    $f$ verläuft durch $P(3\vert 4)$: Dieser Satz enthält als einzige Bedingung $f(3)=4$.

    $f$ hat ein Maximum bei $P(4\vert 3)$: Dieser Satz besagt, dass $f$ durch $P(4\vert 3)$ verläuft und enthält daher die Bedingung $f(4)=3$. Da an der Stelle $x=4$ eine Extremstelle ist, gilt außerdem $f^\prime(4)=0$.

    $f$ hat einen Wendepunkt bei $P(4\vert 0)$: Dieser Satz besagt, dass $f$ durch $P(4\vert 0)$ verläuft und enthält daher die Bedingung $f(4)=0$. Da an der Stelle $x=4$ eine Wendestelle ist, gilt außerdem $f^{\prime\prime} (4)=0$.

    $f$ hat einen Sattelpunkt bei $P(3\vert 0)$: Dieser Satz besagt, dass $f$ durch $P(3\vert 0)$ verläuft und enthält daher die Bedingung $f(3)=0$. Da an der Stelle $x=3$ eine Sattelstelle ist, gilt außerdem $f^\prime (3)=0$ und $f^{\prime\prime} (3)=0$.

  • Tipps

    Eine Wendetangente ist eine Tangente, die den Wendepunkt einer gegeben Funktion berührt und somit an dieser Stelle die gleiche Steigung wie die Funktion hat.

    Drei Gleichungen treffen auf diesen Satz zu.

    Lösung

    Da die Funktion an der Stelle $x=2$ einen Wendestelle hat, gilt $f^{\prime\prime}(2)=0$.

    Da $f$ an der Stelle $x=3$ die Wendetangente berührt, hat der Graph hier die gleiche Steigung wie die Tangente, welche wir im Funktionsterm ablesen können. Daher gilt $f^\prime(2)=3$.

    $f$ hat im Berührpunkt den gleichen Funktionswert wie die Wendetangente, also setzen wir $2$ in die Geradengleichung ein und erhalten $3\cdot 2 - 10=-4$. Dieses ist auch der Funktionswert von $f$ an der Stelle $2$ und es gilt $f(2)=-4$.

  • Tipps

    Der Grad einer ganzrationalen Funktion wird durch die $x$-Potenz mit dem höchsten Exponenten angegeben.

    Bedenke, dass auch das absolute Glied, also ein Summand der nicht mit $x$ bzw. nur mit $x^0$ multipliziert wird, in der allgemeinen Formel für ganzrationale Funktionen enthalten ist.

    Lösung

    Für eine Funktion $n$-ten Grades erhält man einen allgemeinen Funktionsterm mit n+1 Parametern.

    Ausnahmen von dieser Regel bilden nur Funktionen, zu denen bestimmte Symmetrieeigenschaften angegeben sind.

    Wenn eine Funktion mit Punktsymmetrie zum Ursprung gesucht ist, dann hat der Funktionsterm nur Glieder mit ungeraden Exponenten.

    Wenn eine Funktion mit Achsensymmetrie zur $y$-Achse gesucht ist, dann hat der Funktionsterm nur Glieder mit geraden Exponenten.

  • Tipps

    Die Information "berührt die $x$-Achse bei $x=2$" enthält zwei Aussagen.

    Der Graph hat einen Tiefpunkt bei $TP(0\vert 2)$.

    Du solltest auf folgendes LGS kommen:

    $d=-6$

    $a+b+c+d=0$

    $8a+4b+2c+d=0$

    $12a+4b+c=0$

    Lösung

    Schritt 1 Der allgemeine Funktionsterm und seine Ableitung lautet:

    $f(x)=ax^3+bx^2+cx+d$

    $f^\prime(x)=3ax^2+2bx+c$

    Schritt 2

    Aus dem Text können wir vier Bedingungen ablesen:

    $f(0)=-6$

    $f(1)=0$

    $f(2)=0$

    $f^\prime(2)=0$

    Schritt 3

    Aus den vier Gleichungen ergibt sich das folgende LGS:

    $d=-6$

    $a+b+c+d=0$

    $8a+4b+2c+d=0$

    $12a+4b+c=0$

    Schritt 4

    Die Lösungen des LGS sind $a=1,5$; $b=-7,5$; $c=12$ und $ d=−6$.

    Der Funktionsterm lautet $f(x)=1,5x^3-7,5x^2+12x-6$. Der Graph schneidet die $y$-Achse bei $-6$, hat eine Nullstelle bei $1$ und einen Tiefpunkt bei $TP(2\vert 0)$.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.646

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.315

Lernvideos

38.759

Übungen

33.724

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden

Pommes der Pinguin hält einen großen gelben Stern in den Händen
Pommes der Pinguin hält einen großen gelben Stern in den Händen
30 Tage kostenlos testen
30 Tage kostenlos testen
Über 2,1 Millionen Schüler*innen nutzen sofatutor Über 2,1 Millionen Schüler*innen nutzen sofatutor
Lernpakete anzeigen
Lernpakete anzeigen
Lernpakete anzeigen