Punkt-vor-Strich-Regel (Übungsvideo)
Mit den Übungen zur Punkt-vor-Strich-Regel kannst du deine mathematischen Fähigkeiten festigen. Hier findest du Aufgaben, die dir helfen, die Reihenfolge der Rechenoperationen zu meistern. Übe mit einfachen und schwierigen Termen sowie Textaufgaben, um sicherer im Umgang mit Rechenzeichen zu werden.
- Einleitung zum Thema Punkt-vor-Strich-Regel
- Teste dein Wissen zum Thema Punkt-vor-Strich-Regel
- Berechne – einfache Terme
- Berechne – schwierige Terme
- Ergänze die richtigen Rechenzeichen
- Textaufgaben

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Kommutativgesetz und Vertauschungsgesetz

Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Das Distributivgesetz

Punkt-vor-Strich-Regel (Übungsvideo)

Punkt-vor-Strich-Regel und Klammern-zuerst-Regel (Übungsvideo)

Klammerregeln – Grundrechenarten

Kommutativgesetz und Assoziativgesetz – Übungen

Textaufgaben zu Rechengesetzen
Punkt-vor-Strich-Regel (Übungsvideo) Übung
-
Gib an, um welche Rechenart es sich handelt.
Tipps- Addition: $+$
- Subtraktion: $-$
- Multiplikation: $\cdot$
- Division: $:$
Betrachte die Formen, aus denen die Rechenzeichen bestehen.
LösungPunktrechnung:
- $+$ (Addition)
- $-$ (Subtraktion)
Strichrechnung:
- $\cdot$ (Multiplikation)
- $:$ (Division)
-
Bestimme das Ergebnis der Rechenaufgaben.
Tipps- Strichrechnung: $+$ und $-$
- Punktrechnung: $\cdot$ und $:$
Beispiel:
$9-4 \cdot 2 = 9-8=1$
Wir müssen zuerst multiplizieren.LösungBeim Berechnen der Terme gehen wir nach der Punkt-vor-Strichrechnungs-Regel vor:
Wir multiplizieren und dividieren, bevor wir addieren und subtrahieren.
Reine Punktrechnungen oder reine Strichrechnungen führen wir von links nach rechts aus.Beispiel 1: $13-4 \cdot 3$
Wir müssen zuerst multiplizieren:
$13-4 \cdot 3= 13-12=1$
Beispiel 2: $5 \cdot 6 - 3 \cdot 8$
Wir müssen auch hier erst beide Produkte berechnen und zum Schluss subtrahieren:
$5 \cdot 6 - 3 \cdot 8= 30 - 24 = 6$
Beispiel 3: $9+44 : 4 -7$
Wir dividieren zunächst und führen dann die Strichrechnung von links nach rechts aus:
$9+44 : 4 -7 = 9 + 11 - 7 = 20 - 7 = 13$
Beispiel 4: $3 \cdot 12 + 2 \cdot 13$
Wir multiplizieren zuerst und addieren danach:
$3 \cdot 12 + 2 \cdot 13 = 36 + 26 = 62$
Beispiel 5: $15-5 \cdot 2 +7$
Wir multiplizieren zunächst und führen dann die Strichrechnung von links nach rechts aus:
$15-5 \cdot 2 +7 = 15 - 10 + 7 = 5+7=12$
-
Überprüfe die Rechnungen.
TippsKommen in der Rechnung nur Additionen und Subtraktionen vor, wird von links nach rechts gerechnet.
Stehen mehrere Punktrechnungen hintereinander, werden diese auch von links nach rechts ausgeführt.
LösungBeim Berechnen der Terme müssen wir die Punkt-vor-Strichrechnungs-Regel beachten:
Wir multiplizieren und dividieren, bevor wir addieren und subtrahieren.
Reine Punktrechnungen oder reine Strichrechnungen führen wir von links nach rechts aus.Bei den folgenden Rechnungen wurde die Punkt- und Strichrechnung korrekt angewendet:
- $13 + 5 \cdot 4 = 13 + 20 = 33$
- $26: 13 + 4 \cdot 3 = 2 + 12 = 14$
- $12 + 25:5\cdot 2=12+5\cdot2=12+10=22$
Bei der folgenden Rechnung wurde der erste Schritt richtig ausgeführt. Im zweiten Schritt wurde jedoch die Punkt-vor-Strich-Regel missachtet:
$4 \cdot 5 - 10 : 2 = 20 - 10:2 = 10:2=5$Korrekt muss die Rechnung lauten:
$4 \cdot 5 - 10 : 2 = 20 - 10:2 = 20-5=15$Bei der folgenden Rechnung taucht nur Addition und Subtraktion auf. Es muss daher von links nach rechts gerechnet werden, was nicht gemacht wurde:
$24 - 7 + 5= 24 - 12 = 12$Korrekt lautet die Rechnung:
$24 - 7 + 5= 17+5 = 22$ -
Berechne die Aufgaben.
TippsBerechne immer zuerst die Multiplikationen und Divisionen.
Rechne danach von links nach rechts.
LösungBeim Berechnen der Terme müssen wir die Punkt-vor-Strichrechnungs-Regel beachten:
Wir multiplizieren und dividieren, bevor wir addieren und subtrahieren.
Reine Punktrechnungen oder reine Strichrechnungen führen wir von links nach rechts aus.Beispiel 1: $26 - 4\cdot 3 = 26-12=14$
Beispiel 2: $2 \cdot 5 + 6:3=10+2=12$
Beispiel 3: $3 + 12:4 -2=3+3-2=6-2=4$
Beispiel 4: $19 - 4 + 3 \cdot 4=19-4+12=15+12=27$
-
Nenne alle Rechnungen, bei denen Punkt- vor Strichrechnung angewendet werden muss.
TippsDie Punkt-vor-Strich-Regel besagt:
Es wird immer zuerst multipliziert und dividiert, bevor addiert und subtrahiert wird.Beispiel:
$5 \cdot 3 + 4 \cdot 2 = 15+8=23$
LösungDie Punkt-vor-Strich-Regel wird immer dann angewendet, wenn in einer Rechnung sowohl addiert oder subtrahiert als auch multipliziert oder dividiert wird. Eine solche Mischung von Strich- und Punktrechnungen liegt bei folgenden Beispielen vor:
- $13-4 \cdot 3 = 13-12=1$
- $9+44:4-7=9+11-7=13$
- $15-5 \cdot 2+7=15-10+7=12$
Wird hingegen in einer Rechnung nur addiert, nur subtrahiert oder addiert und subtrahiert oder nur multipliziert, nur dividiert oder multipliziert und dividiert, rechnen wir von links nach rechts. Solche reinen Strichrechnungen oder Punktrechnungen finden wir in folgenden Beispielen:
- $2+7 = 9$
- $7 \cdot 8 = 56$
- $35-10+2 = 25+2=27$
-
Vervollständige die Rechnung so, dass das Ergebnis stimmt.
TippsDu kannst nacheinander die vier Rechenzeichen einsetzen und überprüfen, ob das Ergebnis der Rechnung dann stimmt.
Achte beim Berechnen darauf, zuerst zu multiplizieren und zu dividieren.
LösungWir können verschiedene Rechenzeichen ausprobieren:
Beispiel 1:
Das Ergebnis $17$ ist kleiner als $12 + 10 = 22$, daher müssen wir subtrahieren oder dividieren:
$12 + 10 -2 = 20 \neq 17 \rightarrow$ Dieses passt nicht.
$12 + 10 :2 = 17 \rightarrow$ Dieses passt.Beispiel 2:
Im vorderen Teil der Aufgabe ergibt sich $2 \cdot 12 = 24$. Wenn wir $3$ subtrahieren, liegen wir noch über dem Ergebnis $18$. Wir müssen also noch mehr subtrahieren oder die hinteren Zahlen $3$ und $2$ zuerst multiplizieren:
$2 \cdot 12 - 3 -2= 19 \neq18 \rightarrow$ Dieses passt nicht.
$2 \cdot 12 - 3 \cdot 2=18 \rightarrow$ Dieses passt.Beispiel 3:
Das Ergebnis ist größer als $18$. Wir müssen also multiplizieren oder addieren:
$18 \cdot 4 \cdot 2 = 144 \neq 26 \rightarrow$ Dieses passt nicht.
$18+4 \cdot 2 = 26 \rightarrow$ Dieses passt.Beispiel 4:
$12 + 9 \cdot3+4 =43 \neq 11 \rightarrow$ Diese passen nicht.
$12 + 9 + 3+4 =28 \neq 11 \rightarrow$ Diese passen nicht.
$12 + 9 :3-4 =19 \neq 11 \rightarrow$ Diese passen nicht.
$12 + 9: 3-4 =11 \rightarrow$ Diese passen.
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.212
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt