Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Punkt-vor-Strich-Regel (Übungsvideo)

Mit den Übungen zur Punkt-vor-Strich-Regel kannst du deine mathematischen Fähigkeiten festigen. Hier findest du Aufgaben, die dir helfen, die Reihenfolge der Rechenoperationen zu meistern. Übe mit einfachen und schwierigen Termen sowie Textaufgaben, um sicherer im Umgang mit Rechenzeichen zu werden.

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 525 Bewertungen
Die Autor*innen
Avatar
Team Digital
Punkt-vor-Strich-Regel (Übungsvideo)
lernst du in der 5. Klasse - 6. Klasse

Punkt-vor-Strich-Regel (Übungsvideo) Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Punkt-vor-Strich-Regel (Übungsvideo) kannst du es wiederholen und üben.
  • Tipps
    • Addition: $+$
    • Subtraktion: $-$
    • Multiplikation: $\cdot$
    • Division: $:$

    Betrachte die Formen, aus denen die Rechenzeichen bestehen.

    Lösung

    Punktrechnung:

    • $+$ (Addition)
    • $-$ (Subtraktion)
    $~$

    Strichrechnung:

    • $\cdot$ (Multiplikation)
    • $:$ (Division)

  • Tipps
    • Strichrechnung: $+$ und $-$
    • Punktrechnung: $\cdot$ und $:$

    Beispiel:

    $9-4 \cdot 2 = 9-8=1$
    Wir müssen zuerst multiplizieren.

    Lösung

    Beim Berechnen der Terme gehen wir nach der Punkt-vor-Strichrechnungs-Regel vor:
    Wir multiplizieren und dividieren, bevor wir addieren und subtrahieren.
    Reine Punktrechnungen oder reine Strichrechnungen führen wir von links nach rechts aus.

    Beispiel 1: $13-4 \cdot 3$

    Wir müssen zuerst multiplizieren:

    $13-4 \cdot 3= 13-12=1$

    Beispiel 2: $5 \cdot 6 - 3 \cdot 8$

    Wir müssen auch hier erst beide Produkte berechnen und zum Schluss subtrahieren:

    $5 \cdot 6 - 3 \cdot 8= 30 - 24 = 6$

    Beispiel 3: $9+44 : 4 -7$

    Wir dividieren zunächst und führen dann die Strichrechnung von links nach rechts aus:

    $9+44 : 4 -7 = 9 + 11 - 7 = 20 - 7 = 13$

    Beispiel 4: $3 \cdot 12 + 2 \cdot 13$

    Wir multiplizieren zuerst und addieren danach:

    $3 \cdot 12 + 2 \cdot 13 = 36 + 26 = 62$

    Beispiel 5: $15-5 \cdot 2 +7$

    Wir multiplizieren zunächst und führen dann die Strichrechnung von links nach rechts aus:

    $15-5 \cdot 2 +7 = 15 - 10 + 7 = 5+7=12$

  • Tipps

    Kommen in der Rechnung nur Additionen und Subtraktionen vor, wird von links nach rechts gerechnet.

    Stehen mehrere Punktrechnungen hintereinander, werden diese auch von links nach rechts ausgeführt.

    Lösung

    Beim Berechnen der Terme müssen wir die Punkt-vor-Strichrechnungs-Regel beachten:
    Wir multiplizieren und dividieren, bevor wir addieren und subtrahieren.
    Reine Punktrechnungen oder reine Strichrechnungen führen wir von links nach rechts aus.

    Bei den folgenden Rechnungen wurde die Punkt- und Strichrechnung korrekt angewendet:

    • $13 + 5 \cdot 4 = 13 + 20 = 33$
    • $26: 13 + 4 \cdot 3 = 2 + 12 = 14$
    • $12 + 25:5\cdot 2=12+5\cdot2=12+10=22$

    Bei der folgenden Rechnung wurde der erste Schritt richtig ausgeführt. Im zweiten Schritt wurde jedoch die Punkt-vor-Strich-Regel missachtet:
    $4 \cdot 5 - 10 : 2 = 20 - 10:2 = 10:2=5$

    Korrekt muss die Rechnung lauten:
    $4 \cdot 5 - 10 : 2 = 20 - 10:2 = 20-5=15$

    Bei der folgenden Rechnung taucht nur Addition und Subtraktion auf. Es muss daher von links nach rechts gerechnet werden, was nicht gemacht wurde:
    $24 - 7 + 5= 24 - 12 = 12$

    Korrekt lautet die Rechnung:
    $24 - 7 + 5= 17+5 = 22$

  • Tipps

    Berechne immer zuerst die Multiplikationen und Divisionen.

    Rechne danach von links nach rechts.

    Lösung

    Beim Berechnen der Terme müssen wir die Punkt-vor-Strichrechnungs-Regel beachten:
    Wir multiplizieren und dividieren, bevor wir addieren und subtrahieren.
    Reine Punktrechnungen oder reine Strichrechnungen führen wir von links nach rechts aus.

    Beispiel 1: $26 - 4\cdot 3 = 26-12=14$

    Beispiel 2: $2 \cdot 5 + 6:3=10+2=12$

    Beispiel 3: $3 + 12:4 -2=3+3-2=6-2=4$

    Beispiel 4: $19 - 4 + 3 \cdot 4=19-4+12=15+12=27$

  • Tipps

    Die Punkt-vor-Strich-Regel besagt:
    Es wird immer zuerst multipliziert und dividiert, bevor addiert und subtrahiert wird.

    Beispiel:

    $5 \cdot 3 + 4 \cdot 2 = 15+8=23$

    Lösung

    Die Punkt-vor-Strich-Regel wird immer dann angewendet, wenn in einer Rechnung sowohl addiert oder subtrahiert als auch multipliziert oder dividiert wird. Eine solche Mischung von Strich- und Punktrechnungen liegt bei folgenden Beispielen vor:

    • $13-4 \cdot 3 = 13-12=1$
    • $9+44:4-7=9+11-7=13$
    • $15-5 \cdot 2+7=15-10+7=12$

    Wird hingegen in einer Rechnung nur addiert, nur subtrahiert oder addiert und subtrahiert oder nur multipliziert, nur dividiert oder multipliziert und dividiert, rechnen wir von links nach rechts. Solche reinen Strichrechnungen oder Punktrechnungen finden wir in folgenden Beispielen:

    • $2+7 = 9$
    • $7 \cdot 8 = 56$
    • $35-10+2 = 25+2=27$
  • Tipps

    Du kannst nacheinander die vier Rechenzeichen einsetzen und überprüfen, ob das Ergebnis der Rechnung dann stimmt.

    Achte beim Berechnen darauf, zuerst zu multiplizieren und zu dividieren.

    Lösung

    Wir können verschiedene Rechenzeichen ausprobieren:

    Beispiel 1:
    Das Ergebnis $17$ ist kleiner als $12 + 10 = 22$, daher müssen wir subtrahieren oder dividieren:
    $12 + 10 -2 = 20 \neq 17 \rightarrow$ Dieses passt nicht.
    $12 + 10 :2 = 17 \rightarrow$ Dieses passt.

    Beispiel 2:
    Im vorderen Teil der Aufgabe ergibt sich $2 \cdot 12 = 24$. Wenn wir $3$ subtrahieren, liegen wir noch über dem Ergebnis $18$. Wir müssen also noch mehr subtrahieren oder die hinteren Zahlen $3$ und $2$ zuerst multiplizieren:
    $2 \cdot 12 - 3 -2= 19 \neq18 \rightarrow$ Dieses passt nicht.
    $2 \cdot 12 - 3 \cdot 2=18 \rightarrow$ Dieses passt.

    Beispiel 3:
    Das Ergebnis ist größer als $18$. Wir müssen also multiplizieren oder addieren:
    $18 \cdot 4 \cdot 2 = 144 \neq 26 \rightarrow$ Dieses passt nicht.
    $18+4 \cdot 2 = 26 \rightarrow$ Dieses passt.

    Beispiel 4:
    $12 + 9 \cdot3+4 =43 \neq 11 \rightarrow$ Diese passen nicht.
    $12 + 9 + 3+4 =28 \neq 11 \rightarrow$ Diese passen nicht.
    $12 + 9 :3-4 =19 \neq 11 \rightarrow$ Diese passen nicht.
    $12 + 9: 3-4 =11 \rightarrow$ Diese passen.

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.212

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden