Prozentrechnung: Rabatt und Aufschlag
Lerne, wie Rabatte und Aufschläge den Preis beim Verkauf beeinflussen. Finde heraus, wie man den neuen Verkaufspreis nach Rabatten und Aufschlägen berechnet. Spannend? Das und noch vieles mehr erwarten dich im folgenden Text!
- Die Prozentrechnung bei Rabatt und Aufschlag
- Beispiele für die Prozentberechnung von Verkaufspreisen nach Rabatt und Aufschlag
- Ein Verkaufspreis als neuer Ursprungspreis
- Zusammenfassung: Rabatt-Formel und Aufschlags-Formel
- Hinweise zum Video Prozentrechnung – Rabatte und Aufschläge
- Prozentrechnung: Rabatt und Aufschlag – Übungen
- Häufig gestellte Fragen zum Thema Prozentrechnung: Rabatt und Aufschlag

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Prozentrechnung: Rabatt und Aufschlag Übung
-
Gib die Formeln zur Berechnung des Verkaufspreises an.
TippsEin Rabatt reduziert den Ursprungspreis. Ein Aufschlag erhöht den Ursprungspreis.
Der Startpunkt der Rechnung ist der Ursprungspreis.
LösungRichtige Aussagen:
$ \bullet \text{Verkaufspreis} = (100\,\% - \text{Rabatt}) \cdot \text{Ursprungspreis}$
Begründung: Der Verkaufspreis wird ermittelt. Die Reduzierung des Ursprungspreises erfolgt durch die Subtraktion.
$ \bullet \text{Verkaufspreis} = (100\,\% + \text{Aufschlag}) \cdot \text{Ursprungspreis} $
Begründung: Der Verkaufspreis wird ermittelt. Der Aufschlag des Ursprungspreises erfolgt durch die Addition.
Falsche Aussagen:
$\bullet \text{Verkaufspreis} = (100\,\% - \text{Aufschlag}) \cdot \text{Ursprungspreis}$
Begründung: Der Aufschlag wird subtrahiert statt addiert.
$\bullet \text{Ursprungspreis} = (100\,\% - \text{Rabatt}) \cdot \text{Verkaufspreis}$
Begründung: Der Ursprungspreis und der Verkaufspreis sind hier vertauscht. Ermittelt werden soll der Verkaufspreis.
$\bullet \text{Ursprungspreis} = (100\,\% - \text{Aufschlag}) \cdot \text{Verkaufspreis}$
Begründung: Der Ursprungspreis und der Verkaufspreis sind hier vertauscht. Zudem wird der Aufschlag hier subtrahiert statt addiert.
$\bullet \text{Verkaufspreis} = (100\,\% + \text{Rabatt}) \cdot \text{Ursprungspreis}$
Begründung: Der Rabatt wird hier addiert statt subtrahiert. Ein Rabatt hat die Reduzierung des Ursprungspreises zur Folge, weshalb subtrahiert werden muss.
-
Berechne die Verkaufspreise der Gitarre und des Saxophons.
TippsBeispiel: Ein Rabatt von $40\,\%$ wird gegeben. Der Prozentsatz ist demnach: $(100\,\% - 40\,\% = 60\,\%)$
oder
$(1 - 0,\!4) = 0,\!6$.
Der Aufschlag wird entweder als Dezimalzahl zu $1$ addiert oder als Prozentzahl zu $100\,\%$.
Lösung$\begin{array}{rcl} \text{Verkaufspreis}_{Gitarre} &=& (100\,\% - \text{Rabatt}) \cdot \text{Ursprungspreis} \\ \text{Verkaufspreis}_{Gitarre} &=& (100\,\% - 25\,\%) \cdot 200 \,€ \\ \text{Verkaufspreis}_{Gitarre} &=& 75\,\% \cdot 200 \,€ \\ \text{Verkaufspreis}_{Gitarre} &=& 0,\!75 \cdot 200 \,€ \\ \text{Verkaufspreis}_{Gitarre} &=& 150 \,€ \\ \end{array}$
$\begin{array}{rcl} \text{Verkaufspreis}_{Saxophon} &=& (100\,\% + \text{Aufschlag}) \cdot \text{Ursprungspreis} \\ \text{Verkaufspreis}_{Saxophon} &=& (100\,\% + 35\,\%) \cdot 500 \,€ \\ \text{Verkaufspreis}_{Saxophon} &=& 135\,\% \cdot 500 \,€ \\ \text{Verkaufspreis}_{Saxophon} &=& 1,\!35 \cdot 500 \,€ \\ \text{Verkaufspreis}_{Saxophon} &=& 675 \,€ \end{array}$
$\begin{array}{rcl} \text{Verkaufspreis}_{SaxophonNeu} &=& 120\,\% \cdot 675 \,€ \\ \text{Verkaufspreis}_{SaxophonNeu} &=& 1,\!20 \cdot 675 \,€ \\ \text{Verkaufspreis}_{SaxophonNeu} &=& 810 \,€ \\ \end{array}$
-
Berechne die Verkaufspreise.
TippsBeispielrechnung:
$\text{Ursprungspreis:} ~10\,€$
$\text{Rabatt:} ~20\,\% $$\begin{array}{lcr} \text{Verkaufspreis} &=& (100\,\% - 20\,\%) \cdot 10\,€ \\ &=& 80\,\% \cdot 10\,€ \\ &=& 0,\!8 \cdot 10\,€ \\ &=& 8\,€ \end{array}$
Der Rabatt wird von $100\,\%$ subtrahiert, der Aufschlag wir zu $100\,\%$ addiert.
LösungRabatt:
$\text{Ursprungspreis:}~ 35\,€$
$\text{Rabatt:} ~10\,\%$:$\begin{array}{lcr} \text{Verkaufspreis}_{Rabatt} &=& (1 - \text{Rabatt}) \cdot \text{Ursprungspreis} \\ &=& (100\,\% - 10\,\%) \cdot 35\,€ \\ &=& (1 - 0,\!1) \cdot 35\,€ \\ &=& 0,\!9 \cdot 35\,€ \\ &=& 31,\!50\,€ \end{array}$
Aufschlag:
$\text{Ursprungspreis:}~ 24\,€$
$\text{Aufschlag:} ~55\,\%$:$\begin{array}{lcr} \text{Verkaufspreis}_{Aufschlag} &=& (1 + \text{Aufschlag}) \cdot \text{Ursprungspreis} \\ &=& (100\,\% + 55\,\%) \cdot 24\,€ \\ &=& (1 + 0,\!55) \cdot 24\,€ \\ &=& 1,\!55 \cdot 24\,€ \\ &=& 37,\!20\,€ \end{array} $
-
Ermittle die Verkaufspreise des Fitnessstudios.
TippsBeispielrechnung: Es wird ein Rabatt von $40\,\%$ gegeben. Der Prozentsatz ist demnach
$(100\,\% - 40\,\%) = 60\,\%$.
Der Prozentsatz kann auch in Dezimalzahlen geschrieben werden:
$(1 - 0,\!4) = 0,\!6$.
Lösung$1.$
$\text{Ursprungspreis} = 20\,€$
$\text{Aufschlag} = 30\,\% $,$\begin{array}{rcl} \text{Verkaufspreis} &=& (1 + 0,\!3) \cdot 20\,€ \\ &=& 1,\!3 \cdot 20\,€ \\ &=& 26\,€ \end{array}$
$2.$
$\text{Ursprungspreis} = 5\,€$
$\text{Aufschlag} = 15\,\% $,$\begin{array}{rcl} \text{Verkaufspreis} &=& (1 + 0,\!15) \cdot 5\,€ \\ &=& 1,\!15 \cdot 5\,€ \\ &=& 5,\!75\,€ \end{array}$
$3.$
Kunden:
$\text{Ursprungspreis} = 3,\!50\,€$
$\text{Rabatt} = 40\,\%$,$\begin{array}{rcl} \text{Verkaufspreis} &=& (1 - 0,\!4) \cdot 3,\!50\,€ \\ &=& 0,\!6 \cdot 3,\!50\,€ \\ &=& 2,\!10\,€ \end{array}$
Mitarbeiter:
$\text{Ursprungspreis} = 3,\!50\,€$
$\text{Rabatt} = 70\,\%$,$\begin{array}{rcl} \text{Verkaufspreis} &=& (1 - 0,\!7) \cdot 3,\!50\,€ \\ &=& 0,\!3 \cdot 3,\!50\,€ \\ &=& 1,\!05\,€ \end{array}$
-
Benenne die Bezeichnungen der Formeln.
TippsDer Verkaufspreis ist der Preis, zu dem ein Produkt verkauft werden soll.
Aufschläge steigern die Preise.
LösungRichtige Aussagen:
$\bullet$ „Der Wert der Erhöhung wird Aufschlag genannt.“
$\bullet$ „Der Wert der Reduktion eines Preises wird Rabatt genannt. Er kann als Geldbetrag oder als Prozentsatz angegeben werden.“
$ \bullet$ „Der Verkaufspreis wird durch den Ursprungspreis und den Aufschlag bzw. den Rabatt errechnet.“
Falsche Aussagen:
$\bullet$ „Der Ursprungspreis ist der Preis, der durch die Erhöhung oder die Reduzierung des Startpunktes ermittelt wird.“
Begründung: Der Verkaufspreis wird ermittelt. Der Ursprungspreis ist der Startpunkt.
$\bullet$ „Der Aufschlag kann nur als Prozentsatz angegeben werden.“
Begründung: Der Aufschlag kann auch als Geldwert angegeben werden.
$\bullet$ „Der Wert einer Reduktion eines Preises wird Aufschlag genannt.“
Begründung: Der Wert einer Reduktion ist der Rabatt. Der Aufschlag gibt eine Erhöhung des Preises an.
$\bullet$ „Der Ursprungspreis wird durch den Verkaufspreis und den Aufschlag bzw. den Rabatt errechnet.“
Begründung: Der Ursprungspreis ist der Startpunkt der Berechnung. Der Verkaufspreis wird durch den Ursprungspreis und den Aufschlag bzw. den Rabatt errechnet.
-
Bestimme die jeweiligen Rabatte und Aufschläge.
TippsGesucht werden hier der Aufschlag bzw. der Rabatt. Die bekannten Formeln müssen daher umgestellt werden.
Beispiel $1$:
$\text{Verkaufspreis} = 150\,€$
$\text{Ursprungspreis} = 200\,€$$\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{150\,€}{200\,€} \\ &=& 0,\!75 \end{array}$
$\begin{array}{rcl} \text{Rabatt} &=& 1 - \text{Prozentsatz} \\ &=& 1 - 0,\!75 \\ &=& 0,\!25 \\ &=& 25\,\% \end{array}$
Beispiel $2$:
$\text{Verkaufspreis} = 300\,€$
$\text{Ursprungspreis} = 200\,€$$\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{300\,€}{200\,€} \\ &=& 1,\!5 \end{array}$
$\begin{array}{rcl} \text{Aufschlag} &=& \text{Prozentsatz} - 1 \\ &=& 1,\!5 - 1 \\ &=& 0,\!5 \\ &=& 50\,\% \end{array}$
Lösung$1.$
$\text{Verkaufspreis} = 121,\!50 \,€$
$\text{Ursprungspreis} = 90 \,€$$\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{121,50 \,€}{90 \,€} \\ &=& 1,\!35 \end{array}$
Da der Prozentsatz größer als $1$ ist, handelt es sich um einen Aufschlag:
$\begin{array}{rcl} \text{Aufschlag} &=& (\text{Prozentsatz} - 1) \\ &=& 1,\!35 - 1 \\ &=& 0,\!35 \\ &=& 35\,\% \end{array}$
$2.$
$\text{Verkaufspreis} = 248 \,€$
$\text{Ursprungspreis} = 310 \,€$$\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{248 \,€}{310 \,€} \\ &=& 0,\!8 \end{array}$
Da der Prozentsatz kleiner als $1$ ist, handelt es sich um einen Rabatt:
$\begin{array}{rcl} \text{Rabatt} &=& (1 - \text{Prozentsatz}) \\ &=& 1 - 0,\!8 \\ &=& 0,\!2 \\ &=& 20\,\% \end{array}$
$3.$
$\text{Verkaufspreis} = 3,\!50 \,€$
$\text{Ursprungspreis} = 5,\!00 \,€$$\begin{array}{rcl} \text{Prozentsatz} &=& \frac{\text{Verkaufspreis}}{\text{Ursprungspreis}} \\ &=& \frac{3,50 \,€}{5 \,€} \\ &=& 0,\!7 \end{array}$
Da der Prozentsatz kleiner als $1$ ist, handelt es sich um einen Rabatt:
$\begin{array}{rcl} \text{Rabatt} &=& (1 - \text{Prozentsatz}) \\ &=& 1 - 0,\!7 \\ &=& 0,\!3 \\ &=& 30\,\% \end{array}$
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.218
Lernvideos
38.687
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt