Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Mit Prozentsätzen rechnen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.5 / 82 Bewertungen
Die Autor*innen
Avatar
Team Digital
Mit Prozentsätzen rechnen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse

Mit Prozentsätzen rechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Mit Prozentsätzen rechnen kannst du es wiederholen und üben.
  • Zeige auf, wie du mit Prozentsätzen rechnen kannst.

    Tipps

    Den Grundwert kannst du wie folgt bestimmen:

    $\text{Grundwert}=\frac{\text{Prozentwert}}{\text{Prozentsatz}}$

    Diese Gleichung kannst du nach dem Prozentwert umstellen.

    Sind in einer Kolonie $20\%$ der $a$ Ameisen rot und der Rest schwarz, gilt für die Anzahl der roten Ameisen:

    $\text{rot}=0,2a$

    Lösung

    Zum Rechnen mit Prozentsätzen brauchst du grundsätzlich die folgende Formel:

    • $\text{Prozentwert}=\text{Prozentsatz}\cdot \text{Grundwert}$
    Das heißt, zur Berechnung des Prozentwerts multiplizierst du den Grundwert mit dem Prozentsatz.

    In dem Ameisenhaufen lebt eine unbekannte Anzahl $a$ an Ameisen. Wir wissen, dass $30\%$ davon Männchen und $70\%$ Weibchen sind. Für die Prozentwerte gilt also:

    • $\text{Weibchen}=70\%\cdot a=0,7a$
    • $\text{Männchen}=30\% \cdot a = 0,3a$
    Wie viel Prozent mehr Weibchen als Männchen leben denn nun in der Ameisenkolonie?

    Wir bestimmen das Verhältnis, indem wir den Multiplikator von Männchen zu Weibchen bestimmen. Es gilt:

    $\text{Weibchen}=\text{Prozentsatz} \cdot \text{Männchen}$

    Dies stellen wir nach dem Prozentsatz um und setzen die Werte von oben ein:

    $\text{Prozentsatz}=\frac{\text{Weibchen}}{\text{Männchen}}=\frac{0,7a}{0,3a}=\frac{7}{3}\approx 233\%$

  • Beschreibe, wie du Prozentwerte von gegebenen Prozentwerten bestimmst.

    Tipps

    Du berechnest hier den Prozentwert eines Prozentwerts, dazu musst du mit den Prozentsätzen multiplizieren.

    Wären $10\%$ der $30\%$ männlichen Ameisen Arbeiter, müssten wir folgendermaßen rechnen:

    $\text{Arbeiter}=0,1\cdot 0,3a$

    Lösung

    In einer Ameisenkolonie leben $a$ Ameisen, von denen $70\%$ weiblich sind. Das heißt, der Grundwert ist $a$ und der Prozentsatz beträgt $70\%$. Wir nutzen die Formel für den Prozentwert:

    $\text{Prozentwert}=\text{Prozentsatz}\cdot \text{Grundwert}$

    Die Anzahl an weiblichen Ameisen beträgt also:

    $\text{Weibchen}=70\%\cdot a=0,7a$.

    $60\%$ der weiblichen Ameisen sind Arbeiterinnen. Für diese Anzahl nutzen wir erneut die Formel für den Prozentwert, jedoch ist der Grundwert nun der zuvor berechnete Prozentwert:

    • $\text{Arbeiter}=\text{Prozentsatz}\cdot\text{Weibchen}$
    Die Anzahl der Arbeiterinnen beträgt also:

    $\text{Arbeiter}=60\%\cdot 0,7a = 0,6\cdot 0,7a=0,42a$

    Das entspricht einem Prozentsatz von $42\%$ weiblichen Arbeiterinnen in der ganzen Ameisenkolonie.

  • Bestimme die Prozentwerte und Prozentsätze.

    Tipps

    Um zu bestimmen, wie viel mehr gelbe als rote Gummibärchen es gibt, bestimmen wir das Verhältnis, indem wir den Multiplikator von roten zu gelben bestimmen.

    Es gilt:

    $\text{gelb}=\text{Prozentsatz} \cdot \text{rot}$

    Lösung

    Wir brauchen für diese Aufgabe die Formel für den Prozentwert:

    $\text{Prozentwert}=\text{Grundwert}\cdot \text{Prozentsatz}$,

    wobei der Grundwert immer $a$ beträgt.

    Tüte 1: $40\%$ rote, $60\%$ gelbe

    • $\text{rote}=a\cdot 40\%=0,4a$
    • $\text{gelbe}=a\cdot 60\%=0,6a$
    Um zu bestimmen, wie viel mehr gelbe als rote Gummibärchen es gibt, bestimmen wir das Verhältnis, indem wir den Multiplikator von roten zu gelben bestimmen. Es gilt:

    $\text{gelb}=\text{Prozentsatz} \cdot \text{rot}$

    Dies stellen wir nach dem Prozentsatz um und setzen die Werte von oben ein:

    $\text{Prozentsatz}=\frac{\text{gelb}}{\text{rot}}=\frac{0,6a}{0,4a}=\frac{3}{2}=150\%$

    In der Tüte sind also $150\%$-mal so viele gelbe wie rote Gummibärchen.

    Tüte 2: $50\%$ rote, $50\%$ gelbe

    • $\text{rote}=a\cdot 50\%=0,5a$
    • $\text{gelbe}=a\cdot 50\%=0,5a$
    Um zu bestimmen, wie viel mehr gelbe als rote Gummibärchen es gibt, bestimmen wir das Verhältnis, indem wir den Multiplikator von roten zu gelben bestimmen. Es gilt:

    $\text{gelb}=\text{Prozentsatz} \cdot \text{rot}$

    Dies stellen wir nach dem Prozentsatz um und setzen die Werte von oben ein:

    $\text{Prozentsatz}=\frac{\text{gelb}}{\text{rot}}=\frac{0,5a}{0,5a}=1$

    In der Tüte sind also gleich viele gelbe und rote Gummibärchen.

    Tüte 3: $20\%$ rote, $80\%$ gelbe

    • $\text{rote}=a\cdot 20\%=0,2a$
    • $\text{gelbe}=a\cdot 80\%=0,8a$
    Um zu bestimmen, wie viel mehr gelbe als rote Gummibärchen es gibt, bestimmen wir das Verhältnis, indem wir den Multiplikator von roten zu gelben bestimmen. Es gilt:

    $\text{gelb}=\text{Prozentsatz} \cdot \text{rot}$

    Dies stellen wir nach dem Prozentsatz um und setzen die Werte von oben ein:

    $\text{Prozentsatz}=\frac{\text{gelb}}{\text{rot}}=\frac{0,8a}{0,2a}=\frac{8}{2}=4=400\%$

    In der Tüte sind $400\%$-mal so viele gelbe wie rote Gummibärchen.

  • Ermittle die Prozentsätze.

    Tipps

    Wenn du berechnen möchtest, wie viele in der Gruppe Jungen sind und schlecht Ski fahren können, berechnest du den Prozentsatz der schlechten Skifahrer von dem Prozentsatz der Jungen.

    Zur Berechnung des Prozentsatzes eines Prozentsatzes multiplizierst du die beiden Prozentsätze:

    Also gilt für die schlechten Skifahrer $0,5\cdot 0,4\cdot s$.

    Willst du die Anzahl der schlecht Ski fahrenden Mitglieder berechnen, addierst du die beiden Prozentsätze, die du für Jungen und Mädchen bestimmt hast.

    Lösung

    Wie viele aus der Gruppe sind Mädchen und sehr gut im Skifahren?

    $\text{Skifahrerinnen}=0,6\cdot s$

    $\text{sehr gute Skifahrerinnen}=0,75\cdot 0,6\cdot s=0,45s$

    Das entspricht also einem Prozentsatz von $45\%$.

    Wie viele aus der Gruppe sind Jungen und sehr gut im Skifahren?

    $\text{Skifahrer}=0,4\cdot s$

    $\text{sehr gute Skifahrer}=0,5\cdot 0,4\cdot s=0,2s$

    Das entspricht also einem Prozentsatz von $20\%$.

    Wie viele aus der Gruppe sind Mädchen und schlecht im Skifahren?

    $\text{Skifahrerinnen}=0,6\cdot s$

    $\text{schlechte Skifahrerinnen}=0,25\cdot 0,6\cdot s=0,15s$

    Das entspricht also einem Prozentsatz von $15\%$.

    Wie viele Mitglieder der Skigruppe können sehr gut Ski fahren?

    Betrachte zunächst die Mädchen, die gut Ski fahren können:

    $\text{sehr gute Skifahrerinnen}=0,75\cdot 0,6\cdot s=0,45s$

    Also $45\%$.

    $\text{sehr gute Skifahrer}=0,5\cdot 0,4\cdot s=0,2s$

    Also $20\%$.

    Zuletzt müssen wir die Prozentsätze addieren. Es können also $45\%+20\%=65\%$ sehr gut Ski fahren.

  • Gib die richtigen Formeln an.

    Tipps

    Für den Prozentwert multiplizierst du Grundwert und Prozentsatz.

    Teilt man den Prozentwert durch den Grundwert, erhält man den Prozentsatz.

    Lösung

    Zur Berechnung des Prozentwerts nutzen wir die folgende Formel:

    • $\text{Prozentwert}=\text{Prozentsatz}\cdot \text{Grundwert}$
    Mit $G$ als Grundwert, $W$ als Prozentwert und $p\%$ als Prozentsatz gilt:

    • $W=p\%\cdot G$
    Diese Formel kannst du auch nach dem Grundwert oder Prozentsatz umstellen:

    • $\text{Grundwert}=\frac{\text{Prozentwert}}{\text{Prozentsatz}}$
    • $G=\frac{W}{p\%}=W:p\%$
    • $\text{Prozentsatz}=\frac{\text{Prozentwert}}{\text{Grundwert}}$
    • $p\%=\frac{W}{G}=W:G$
  • Prüfe die Aussagen.

    Tipps

    Berechne zum Beispiel $120\%$ von $100$ und $20\%$ von $100$ und vergleiche die Werte mit dem Grundwert.

    Lösung

    Korrekt sind die folgenden Aussagen:

    $1.$ $10 \%$ von $70\%$ einer Menge sind genauso viel wie $70\%$ von $10\%$ derselben Menge.

    Da die Multiplikation kommutativ (vertauschbar) ist, ist es egal, ob man

    • $0,1\cdot 0,7 \cdot a=0,07a$
    rechnet oder

    • $0,7\cdot 0,1\cdot a=0,07a$.
    $2.$ Es gilt $\frac{\text{Prozentsatz} \cdot \text{Grundwert}}{\text{Prozentwert}}=1$.

    Wir kennen die Formel

    • $\text{Prozentsatz} \cdot \text{Grundwert}=\text{Prozentwert}$.
    Teilen wir auf beiden Seiten durch den Prozentwert, erhalten wir die angegebene Gleichung.

    $3.$ Der Prozentwert kann kleiner oder größer als der Grundwert sein.

    Betrachtet man $120\%$ vom Grundwert $100$, beträgt der Prozentwert $120$, betrachtet man $80\%$ vom Grundwert $100$, beträgt der Prozentwert $80$.

    Falsch sind diese Aussagen:

    $1.$ Möchte man den Prozentwert eines Prozentwerts berechnen, addiert man die beiden Werte.

    Die beiden Prozentsätze werden mit dem Grundwert multipliziert. Dies passiert analog zu der Formel

    • $\text{Prozentsatz} \cdot \text{Grundwert}=\text{Prozentwert}$.
    $2.$ Es gilt $\frac{\text{Prozentsatz} \cdot \text{Grundwert}}{\text{Prozentwert}}=0$.

    Wir kennen die Formel

    • $\text{Prozentsatz} \cdot \text{Grundwert}=\text{Prozentwert}$.
    Teilen wir auf beiden Seiten durch den Prozentwert, erhalten wir:

    • $\frac{\text{Prozentsatz} \cdot \text{Grundwert}}{\text{Prozentwert}}=1$
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.102

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.921

Lernvideos

37.022

Übungen

34.285

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden