Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kugel – Volumen und Oberfläche

Lerne, das Volumen einer Kugel zu berechnen! Das Volumen einer Kugel beschreibt den dreidimensionalen Raum, den eine Kugel einnimmt. Es wird in Kubik-Einheiten gemessen und kann mit der Formel V = (4/3)πr³ berechnet werden, wobei "V" für das Volumen steht und "r" für den Radius der Kugel.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 52 Bewertungen
Die Autor*innen
Avatar
Team Digital
Kugel – Volumen und Oberfläche
lernst du in der 9. Klasse - 10. Klasse

Kugel – Volumen und Oberfläche Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kugel – Volumen und Oberfläche kannst du es wiederholen und üben.
  • Benenne die Eigenschaften von Kreisen und Kugeln.

    Tipps

    Die Oberfläche einer Kugel ähnelt der ebenen Kreislinie, deren Punkte vom Mittelpunkt denselben Abstand haben.

    Der Oberflächeninhalt einer Kugel wird in Einheiten gemessen, die das Quadrat einer Länge enthalten, beispielsweise in $\text{cm}^2$ oder $\text m^2$.

    Der Oberflächeninhalt einer Kugel ist viermal so groß wie der Flächeninhalt eines Kreises mit demselben Radius.

    Lösung

    Eine Kugel ist eine räumliche Figur, sie ähnelt dem Kreis als ebene Figur. Die Oberfläche der Kugel entspricht der Kreislinie, das von der Oberfläche eingeschlossene Volumen entspricht der von der Kreislinie umgrenzten Kreisscheibe. Wie die Punkte der Kreislinie vom Mittelpunkt denselben Abstand haben, so besteht auch die Oberfläche der Kugel aus allen Punkten im Raum, die vom Mittelpunkt $M$ denselben Abstand haben.

    Folgende Aussagen sind demnach wahr:

    • Die Oberfläche einer Kugel besteht aus allen Punkten im Raum, die vom Mittelpunkt $M$ denselben Abstand haben.
    • Der Radius eines Kreises ist der Abstand zwischen einem Punkt auf der Kreislinie und dem Mittelpunkt des Kreises.
    • Die Fläche eines Kreises mit Radius $r$ beträgt $\pi r^2$.
    • Der Oberflächeninhalt einer Kugel mit Radius $r$ ist $4\pi r^2$.

    Diese Aussagen dagegen sind falsch:

    • Das Volumen einer Kugel besteht aus allen Punkten, die vom Mittelpunkt $M$ denselben Abstand haben.
    Das Volumen der Kugel besteht aus den Punkten im Raum, die von der Kugeloberfläche eingeschlossen sind. Die Oberfläche der Kugel besteht aus allen Punkten, die vom Mittelpunkt denselben Abstand $r$ haben. Im Inneren liegen alle Punkte, deren Abstand zum Mittelpunkt kleiner als $r$ ist.
    • Der Radius einer Kugel ist der Abstand zwischen dem höchsten und dem niedrigsten Punkt der Kugel.
    Der größtmögliche Abstand zweier Punkte der Kugeloberfläche ist der Durchmesser. Dieser ist z. B. der Abstand zwischen dem höchsten und dem niedrigsten Punkt der Kugeloberfläche. Der Durchmesser ist doppelt so groß wie der Radius.
    • Das Volumen einer Kugel wird in $\text{m}^2$ gemessen.
    Das Volumen misst den dreidimensionalen Raum im Inneren der Kugeloberfläche. Daher wird es in Einheiten gemessen, die die dritte Potenz einer Länge enthalten, z. B. $\text{cm}^3$ oder $\text m^3$. Es gibt aber auch Einheiten, die keine dritte Potenz enthalten, wie Liter. Dagegen sind Einheiten, die die zweite Potenz einer Länge enthalten, z. B. $\text{cm}^2$ oder $\text m^2$, stets Einheiten für Flächeninhalte.
  • Gib die Formeln für Oberflächeninhalt und Volumen einer Kugel wieder.

    Tipps

    Der Oberflächeninhalt einer Kugel ist viermal so groß wie der Flächeninhalt eines Kreises mit demselben Radius.

    Der Flächeninhalt eines Kreises mit Radius $r$ ist $A=\pi r^2$.

    In den Formeln für den Oberflächeninhalt und das Volumen kommen keine höheren Potenzen von $\pi$ vor.

    Lösung

    Oberflächeninhalt der Kugel

    Die Formel für den Oberflächeninhalt $A$ einer Kugel mit Radius $r$ lautet:

    $A=4\pi r^2$

    Um den Oberflächeninhalt einer Kugel mit Radius $r=10~\text{cm}$ zu bestimmen, setzen wir in diese Formel $r=10~\text{cm}$ ein. Durch Quadrieren des Radius mitsamt der Einheit ermitteln wir den Oberflächeninhalt:

    $A= 4\pi \cdot 10^2~\text{cm}^2 =400\pi~\text{cm}^2$

    Dies ist der genaue Wert des Oberflächeninhaltes. Um zu wissen, welchem Wert in Dezimalzahlen das ungefähr entspricht, setzen wir $\pi\approx 3,14$. Damit erhalten wir:

    $A \approx 400 \cdot 3,14~\text{cm}^2 \approx 1 256~\text{cm}^2$

    Volumen der Kugel

    Für das Volumen einer Kugel mit Radius $r$ gilt die Formel:

    $V = \frac{4}{3}\pi r^3$

    Um nun das Volumen einer Kugel mit Radius $r=10~\text{cm}$ zu bestimmen, setzen wir $r=10~\text{cm}$ in diese Formel ein. Mit der dritten Potenz des Radius und seiner Einheit ermitteln wir das Volumen:

    $A= \frac{4}{3}\pi \cdot 10^3~\text{cm}^3 =\frac{4}{3} \cdot 1 000\pi~\text{cm}^3$

    Wie zuvor beim Oberflächeninhalt ist dies der genaue Wert des Volumens. Um einen Dezimalwert zu erhalten, setzen wir wieder $\pi \approx 3,14$ und notieren von dem Ergebnis nur die Stellen vor dem Komma. So ergibt sich:

    $V \approx \frac{4}{3} \cdot 1 000 \cdot 3,14~\text{cm}^3 \approx 4 187~\text{cm}^3$

  • Ordne die Oberflächeninhalte und Volumina zu.

    Tipps

    Der Oberflächeninhalt einer Kugel mit Durchmesser $r$ ist derselbe wie der Flächeninhalt eines Kreises mit Radius $r$.

    Eine Kugel mit dem Radius $r=\frac{3}{2}~\text{cm}$ hat folgenden Oberflächeninhalt:

    $A= 4\pi \frac{3^2}{2^2}~\text{cm}^2 = 9 \pi ~\text{cm}^2$

    Verdoppelt man den Radius einer Kugel, so vervielfacht sich das Volumen um den Faktor $2^3=8$.

    Lösung

    Zur Berechnung des Oberflächeninhaltes $A$ und des Volumens $V$ einer Kugel mit Radius $r$ verwendet Ninja-Nina diese Formeln:

    $ \begin{array}{ll} A &= 4\pi r^2 \\ V &= \frac{4}{3} \pi r^3 \end{array} $

    Durch Einsetzen der angegebenen Werte für den Radius $r$ berechnen wir für Ninja-Nina folgende Oberflächeninhalte und Volumina:

    $ \begin{array}{c|c|c} r & A & V \\ \hline 2~\text{cm} & 16~\pi~\text{cm}^2 & \frac{32}{3}\pi~\text{cm}^3 \\ \pi~\text{cm} & 4\pi^3~\text{cm}^2 & \frac{4}{3}\pi^4~\text{cm}^3 \\ \frac{2}{\sqrt{\pi}}~\text{cm} & 16~\text{cm}^2 & \frac{32}{3\sqrt{\pi}}~\text{cm}^3 \\ \frac{3}{2}~\text{cm} & 9\pi~\text{cm}^2 & \frac{9\pi}{2}~\text{cm}^3 \end{array} $

    Dieser Tabelle kann Ninja-Nina die Zuordnungen entnehmen.

  • Ordne die Werte für Umfang, Flächeninhalt, Oberflächeninhalt und Volumen den Radien zu.

    Tipps

    Der Oberflächeninhalt einer Kugel mit Radius $r$ entspricht dem Flächeninhalt eines Kreises mit Radius $2r$.

    Zu jedem Radius gehört jeweils höchstens ein Wert für $U$, $A$, $O$ und $V$.

    Der Oberflächeninhalt einer Kugel mit Radius $r=\pi~\text{cm}$ beträgt $\frac{4}{3}\pi \cdot (\pi~\text{cm})^3 = \frac{4}{3} \pi^4~\text{cm}^3$.

    Lösung

    Zur Berechnung des Umfangs $U$ und des Flächeninhaltes $A$ eines Kreises mit Radius $r$ bzw. des Oberflächeninhaltes $O$ und des Volumens $V$ einer Kugel mit Radius $r$ verwenden wir folgende Formeln:

    $ \begin{array}{ll} U &= 2\pi r \\ A &= \pi r^2 \\ O &= 4\pi r^2 \\ V &= \frac{4}{3} \pi r^3 \end{array} $

    In diese Formeln setzen wir die Werte $r=1~\text m$ und $r=2~\text m$ und $r=\frac{2}{\sqrt{\pi}}~\text m$ ein und erhalten folgende Ergebnisse:

    $ \begin{array}{l|l|l|l|l} r & U & A & O & V \\ \hline 1~\text m & 2\pi~\text m & \pi~\text{m}^2 & 4\pi~\text{m}^2 & \frac{4}{3} \pi~\text{m}^3 \\ 2~\text m & 4\pi~\text m & 4 \pi~\text{m}^2 & 16 \pi~\text{m}^2 & \frac{32}{3} \pi~\text{m}^3 \\ \frac{2}{\sqrt{\pi}}~\text m & 4 \sqrt{\pi}~\text m & 4~\text m^2 & 16~\text m^2 & \frac{32}{3\sqrt{\pi}}~\text m^3 \end{array} $

    Der Tabelle kannst du die jeweiligen Zuordnungen entnehmen.

  • Berechne den Oberflächeninhalt einer Kugel.

    Tipps

    Mit Folie kann man gut Dinge einwickeln. Bei runden Objekten wirft die Folie dann aber Falten. Dann braucht man eher etwas mehr Folie.

    In der Formel für das Volumen oder den Rauminhalt einer Kugel kommt der Radius vor. Dort steht er in der dritten Potenz.

    Lösung

    Oberflächeninhalt der Kugel

    Um den Oberflächeninhalt $A$ ihrer Kugel zu berechnen, verwendet Ninja-Nina diesw Formel:

    • $A=4\pi r^2$
    In dieser Formel ist $r$ der Radius der Kugel.

    Ninja-Ninas Kugel hat einen Radius von $r=10~\text{cm}$. Diesen Wert setzt sie an Stelle von $r$ in die Formel für den Oberflächeninhalt ein. So erhält sie folgende Rechnung:

    $A=4\pi \cdot 10^2~\text{cm}^2 = 400\pi~\text{cm}^2$

    Um den Oberflächeninhalt als Dezimalzahl zu schreiben, setzt Ninja-Nina $\pi \approx 3,14$. Jetzt erhält sie folgende Rechnung:

    $A \approx 400 \cdot 3,14~\text{cm}^2 \approx 1 256~\text{cm}^2$

    So viel Folie braucht Ninja-Nina also mindestens.

  • Analysiere die Berechnungen des Oberflächeninhaltes und des Volumens.

    Tipps

    Der Flächeninhalt eines Quadrats mit Kantenlänge $2~\text{cm}$ ist $4~\text{cm}^2$.

    Lösung

    Folgende Aussagen sind falsch:

    • Das Volumen einer Kugel mit Radius $r$ ist kleiner als das eines kreisförmigen Zylinders mit Radius $r$ und Höhe $r$. Denn das Volumen des Zylinders berechnet man wie folgt: Die kreisförmige Grundfläche hat den Flächeninhalt $\pi r^2$. Multipliziert mit der Höhe ergibt sich das Volumen $V= \pi r^3$.
    Die Berechnung des Zylindervolumens ist korrekt. Aber der Wert $V= \pi r^3$ ist nicht größer, sondern kleiner als das Volumen einer Kugel mit Radius $r$. Denn für die ist ja $V = \frac{4}{3} \pi r^3$.
    • Der Flächeninhalt eines Quadrats der Kantenlänge $2\pi~\text{cm}$ ist dasselbe wie der Oberflächeninhalt einer Kugel mit Radius $1~\text{cm}$.
    Der Flächeninhalt eines Quadrats mit Kantenlänge $2\pi~\text{cm}$ beträgt $A=(2\pi~\text{cm}) \cdot (2\pi~\text{cm}) = 4\pi^2~\text{cm}^2$, aber der Oberflächeninhalt einer Kugel mit Radius $1~\text{cm}$ ist $A = 4\pi 1^2~\text{cm}^2 = 4\pi~\text{cm}^2$.

    Folgende Aussagen sind richtig:

    • Eine Kugel vom Radius $r=10~\text{cm}$ hat ein Volumen von etwa $V \approx 4 187~\text{cm}^3$. Das Volumen eines Würfels mit Kantenlänge $10~\text{cm}$ ist viel kleiner.
    Das Würfelvolumen beträgt $V=(10~\text{cm})^3 = 1 000~\text{cm}^3$. Das ist tatsächlich viel weniger als $4 187~\text{cm}^3$.
    • Der Oberflächeninhalt einer Kugel mit Radius $\frac{1}{4}~\text{m}$ ist kleiner als der Flächeninhalt eines Quadrats mit Kantenlänge $1~\text{m}$.
    Der Flächeninhalt eines solchen Quadrats ist $A=1~\text{m}^2$. Der Oberflächeninhalt beträgt $A= 4\pi r^2 = 4 \pi \cdot \frac{1}{4^2}~\text{m}^2 = \frac{\pi}{4}~\text{m}^2$. Mit $\pi \approx 3,14 < 4$ ist $\frac{\pi}{4} < 1$. Das heißt, der Oberflächeninhalt der Kugel ist kleiner als der Flächeninhalt des Quadrats.
    • Der Oberflächeninhalt einer Kugel ist viermal so groß wie der Flächeninhalt des Kreises, der vom Äquator begrenzt wird.
    Die Formel für den Oberflächeninhalt lautet: $A = 4\pi r^2$. Der Radius des Äquators ist der Radius der Kugel. Daher hat der Kreis in der Äquatorebene den Flächeninhalt $\pi r^2$. Der Oberflächeninhalt ist also viermal so groß wie der Flächeninhalt des Äquatorkreises.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.807

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.863

Lernvideos

37.804

Übungen

33.942

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden