Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Volumeneinheiten

Hier wird kurz und klar erklärt, was Volumeneinheiten sind. Es wird gelehrt, verschiedenste Einheiten zu verstehen, wie zum Beispiel Kubikmeter, und wie man sie umrechnen kann. Verstehst du, wie ein Kubikzentimeter in Beziehung zu einem Liter steht? Interessiert dich das? Das und vieles mehr findest du im folgenden Text!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Volumeneinheiten

Welche Einheit hat das Volumen?

1/5
Bewertung

Ø 4.0 / 380 Bewertungen
Die Autor*innen
Avatar
Team Digital
Volumeneinheiten
lernst du in der 5. Klasse - 6. Klasse

Volumeneinheiten Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Volumeneinheiten kannst du es wiederholen und üben.
  • Tipps

    Ein Kubikzentimeter ($\text{cm}^3$) ist kleiner als ein Kubikdezimeter ($\text{dm}^3$).

    $1~\text{dm}^3$ entspricht einem Liter.

    Lösung

    Diese Aussagen sind falsch:

    „Das Volumen eines Quaders berechnest du, indem du Länge, Breite und Höhe addierst.“

    • Beim Berechnen des Volumens eines Quaders multiplizierst du Länge, Breite und Höhe. Da du hier drei Längen miteinander multiplizierst, musst du auch die Einheiten multiplizieren. So ergeben sich Einheiten, die zur dritten Potenz erhoben sind (z. B. $\text{m}^3$).
    „$1~000$ Kubikdezimeter ($\text{dm}^3$) entspricht einem Kubikzentimeter ($\text{cm}^3$).“

    „Eine Volumeneinheit passt immer genau $100$ mal in die nächstgrößere Volumeneinheit.“

    • Eine Volumeneinheit passt immer genau $1~000$ mal in die nächstgrößere Volumeneinheit. Da ein Kubikzentimeter ($\text{cm}^3$) kleiner ist als ein Kubikdezimeter ($\text{dm}^3$), gilt auch: $1~000~\text{cm}^3=\text{dm}^3 $.
    Diese Aussagen sind korrekt:

    „Ein Würfel mit Kantenlänge $1~\text{dm}$ hat ein Volumen von einem Liter.“

    • Hier rechnest du $V=a^3= (1~\text{dm})^3= 1~\text{dm}^3$. Das entspricht einem Liter.
    „Ein Kubikmeter ($\text{m}^3$) sind genau $1~000$ Kubikdezimeter ($\text{dm}^3$).“

  • Tipps

    Das Volumen eines Körpers erhältst du, indem du ihre Grundfläche mit der Höhe multiplizierst.

    Wir können Volumeneinheiten ineinander umrechnen. Bei dieser Umrechnung bleibt das Volumen an sich gleich. Verkleinerst du allerdings die Einheit, musst du den Zahlenwert vergrößern. Möchtest du in die nächstkleinere Einheit umrechnen, musst du mit $1~000$ multiplizieren.

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Die erste würfelförmige Kiste hat eine Kantenlänge von einem Meter. Um ihr Volumen zu bestimmen, muss man die Länge $l$, Breite $b$ und Höhe $h$ miteinander multiplizieren. Das ergibt:

    $V=l \cdot b \cdot h= 1~\text{m} \cdot 1~\text{m} \cdot 1~\text{m}=1~\text{m}^3$“

    • Hier müssen die Zahlen und Einheiten einzeln multipliziert werden. Rechnest du $1\cdot 1 \cdot 1$, ergibt das $1$. Die Multiplikation der Einheiten kannst du zu $~\text{m}^3$ zusammenfassen.
    „$1~\text{m}^3$ entspricht ungefähr dem Volumen eines Kühlschranks.

    Auch das Volumen dieser Kiste mit einer Seitenlänge von einem Dezimeter kannst du durch Multiplikation der Seitenlängen bestimmen. Hier erhältst du:

    $V=l \cdot b \cdot h=1~\text{dm} \cdot 1~\text{dm} \cdot 1~\text{dm}=1~\text{dm}^3$“

    • Die Multiplikation funktioniert genauso wie oben. Ein $\text{dm}^3$ entspricht einem Volumen von einem Liter.
    $1~\text{dm}^3$ entspricht ungefähr dem Volumen eines Getränkekartons.

    Jetzt möchten sie die beiden Einheiten ineinander umrechnen. Sie wissen:

    $1~\text{m}^3=1~000~\text{dm}^3$

    Möchte man $1~\text{m}^3$ in $\text{dm}^3$ umrechnen, muss man mit $1~000$ multiplizieren.“

    • Möchtest du in die nächstkleinere Volumeneinheit umrechnen, musst du mit $1~000$ multiplizieren. Bei dieser Umrechnung bleibt das Volumen an sich gleich. Da du allerdings die Einheit verkleinerst, musst du den Zahlenwert vergrößern.
    „Möchte man $1~\text{dm}^3$ in $\text{m}^3$ umrechnen, muss man durch $1~000$ dividieren.“

    • Möchtest du in die nächstgrößere Volumeneinheit umrechnen, musst du durch $1~000$ dividieren. Bei dieser Umrechnung bleibt das Volumen an sich gleich. Da du allerdings die Einheit vergrößerst, musst du den Zahlenwert verkleinern.
  • Tipps

    Zuerst multiplizierst du alle Kantenlängen der Quader. Für den ersten erhältst du:

    $V=l \cdot b \cdot h= 3~\text{cm} \cdot 4~\text{cm} \cdot 5~\text{cm}$

    Anschließend rechnest du die Volumeneinheit in die nächstgrößere oder nächstkleinere Volumeneinheit um, indem du entweder durch $1~000$ teilst oder damit multiplizierst.

    Lösung

    So kannst du die Volumina bestimmen:

    Zuerst multiplizierst du alle Kantenlängen der Quader. Für den ersten erhältst du:

    • $V=l \cdot b \cdot h= 3~\text{cm} \cdot 4~\text{cm} \cdot 5~\text{cm}=60~\text{cm}^3$
    Anschließend rechnest du die Volumeneinheit in die nächstgrößere oder nächstkleinere Volumeneinheit um, indem du entweder durch $1~000$ teilst oder damit multiplizierst. Hier erhältst du:

    • $60~\text{cm}^3=0,06~\text{dm}^3$
    Beim zweiten Quader ergibt sich:

    • $V= 3~\text{dm} \cdot 40~\text{dm} \cdot 5~\text{dm}=600~\text{dm}^3$
    Um auf Meter umzurechnen, teilen wir durch $1~000$. So ergibt sich:

    • $600~\text{dm}^3=0,6~\text{m}^3$
    Für den dritten Quader erhalten wir genauso:

    • $V=15~\text{m}^3$
    Und das Volumen des vierten Quaders beträgt:

    • $V=8~\text{cm}^3$
  • Tipps

    Möchtest du zur nächstgrößeren Einheit umrechnen, musst du durch $1~000$ teilen:

    $V=1~000~\text{cm}^3=1~\text{dm}^3$

    Willst du von $\text{cm}^3$ zu $\text{m}^3$ springen, kannst du zweimal durch $1~000$ teilen:

    $V=1~000~000~\text{cm}^3=1~000~\text{dm}^3=1~\text{m}^3$

    Lösung

    Möchtest du eine Volumenangabe in die nächstkleinere Einheit umrechnen, so multiplizierst du mit $1~000$. Bei der Umrechnung in die nächstgrößere Volumeneinheit musst du durch $1~000$ teilen. Damit erhältst du folgende Umrechnungen:

    • $V=0,3~\text{dm}^3=300~\text{cm}^3$
    • $V=40~\text{m}^3=40~000~\text{dm}^3$
    • $V=55~\text{cm}^3=0,055~\text{dm}^3$
    Möchtest du von $\text{cm}^3$ zu $\text{m}^3$ springen, kannst du wie folgt zweimal durch $1~000$ teilen:

    • $V=39~\text{cm}^3=0,039~\text{dm}^3=0,000039~\text{m}^3$
  • Tipps

    Ein Milliliter ist das Tausendstel eines Liters.

    Beim Umrechnen von Volumeneinheiten bleibt das Volumen an sich immer gleich. Wenn du also die Einheit verkleinerst, musst du den Zahlenwert vergrößern.

    Lösung

    So sieht die vollständige Grafik aus. Merke dir, dass beim Umrechnen von Volumeneinheiten das Volumen an sich immer gleich bleibt. Wenn du die Einheit verkleinerst, musst du den Zahlenwert allerdings vergrößern. Rechnest du also in die nächstkleinere Einheit um, musst du den Zahlenwert mit $1~000$ multiplizieren.

    Umgekehrt musst du beim Umrechnen in die nächstgrößere Einheit den Zahlenwert durch $1000$ teilen.

  • Tipps

    Die Längeneinheiten Meter ($\text{m}$), Dezimeter ($\text{dm}$), Zentimeter ($\text{cm}$) und Millimeter ($\text{mm}$) kannst du in die nächstkleinere oder nächstgrößere Längeneinheit umrechnen, indem du den zugehörigen Zahlenwert mit $10$ multiplizierst oder durch $10$ dividierst.

    Beispielsweise kannst du $40~\text{mm}$ in Zentimeter umrechnen, indem du den Zahlenwert durch $10$ teilst. So erhältst du:

    $40~\text{mm}=4~\text{cm}$

    Lösung

    Die Längeneinheiten Meter ($\text{m}$), Dezimeter ($\text{dm}$), Zentimeter ($\text{cm}$) und Millimeter ($\text{mm}$) kannst du in die nächstkleinere oder nächstgrößere Längeneinheit umrechnen, indem du den zugehörigen Zahlenwert mit $10$ multiplizierst oder durch $10$ dividierst. Anschließend kannst du das Volumen wie gewohnt ausrechnen. Wenn nötig, kannst du die Volumeneinheit noch umformen. So bemerkst du, dass diese Volumenangaben falsch sind:

    „Ein Quader mit den Kantenlängen $a=2~\text{cm}$, $b=12~\text{mm}$ und $c=30~\text{mm}$ hat ein Volumen von $V=7,40,~\text{cm}^3$“

    Hier erhältst du:

    $b=12~\text{mm}=1,2~\text{cm}$ und $c=30~\text{mm}=3~\text{cm}$

    Also erhältst du für das Volumen:

    • $V=2~\text{cm} \cdot 1,2~\text{cm} \cdot 3~\text{cm} = 7,2~\text{cm}^3$
    „Ein Quader mit den Kantenlängen $a=3~\text{m}$, $b=12~\text{dm}$ und $c=350~\text{cm}$ hat ein Volumen von $V=~1~260~000~\text{cm}^3$“

    Hier erhältst du für das Volumen:

    • $V=300~\text{cm} \cdot 120~\text{cm} \cdot 350~\text{cm} = 12~600~000~\text{cm}^3$
    Diese Volumen wurden korrekt berechnet:

    „Ein Quader mit den Kantenlängen $a=30~\text{cm}$, $b=12~\text{dm}$ und $c=35~\text{cm}$ hat ein Volumen von $V=0,126~\text{m}^3$“

    • $V=0,3~\text{m} \cdot 1,2~\text{m} \cdot 0,35~\text{m} =0,126~\text{m}^3$
    „Ein Quader mit den Kantenlängen $a=200~\text{cm}$, $b=12~\text{dm}$ und $c=30~\text{cm}$ hat ein Volumen von $720$ Litern.“

    • $V=20~\text{dm} \cdot 12~\text{dm} \cdot 3~\text{dm} =720~\text{dm}^3=720~\text{Liter}$
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.369

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.225

Lernvideos

38.691

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden