30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Kugel – Oberflächeninhalt & Volumen 04:54 min

Textversion des Videos

Transkript Kugel – Oberflächeninhalt & Volumen

Ninja-Nina ist in geheimer Mission unterwegs! Für den Fall, dass sie entdeckt wird, hat sie Rauchbomben dabei...damit kann sie etwas Verwirrung stiften! Oh nein, das war die letzte!Nach ihrem bewährten Ninja-Rezept muss sie dann wohl eine neue Rauchbombe herstellen. Dazu baut sie eine Kugel aus Ninja-Rauchpulver, die sie mit Ninja-Spezialfolie umwickelt. Die Kugel muss so viel Pulver enthalten, dass Nina komplett im Rauch verschwinden kann! Der Oberflächeninhalt und das Volumen der Kugel verrät uns, ob Ninja-Nina genug Material dabei hat. Sehen wir uns eine Kugel zunächst einmal genauer an. Eine Kugel ist ein dreidimensionaler Körper. In der Mitte befindet sich der Mittelpunkt M. Jeder Punkt, der sich auf der Oberfläche der Kugel befindet, hat von diesem Mittelpunkt den gleichen Abstand. Dieser Abstand wird als Radius r bezeichnet. Der doppelte Radius ist der Durchmesser d. Den Raum, der von der Kugeloberfläche eingeschlossen wird, nennt man das Volumen der Kugel. Vielleicht erinnert dich das alles ein wenig an eine ebene Figur, die gewisse Ähnlichkeiten zur Kugel aufweist! Auch beim Kreis gibt es einen Rand, der vom Mittelpunkt immer den gleichen Abstand, nämlich den Radius, hat. Kennst du noch die Formeln zur Berechnung des Umfangs und des Flächeninhalts eines Kreises? Um den Umfang U zu berechnen, rechnest du '2 mal Pi mal r'. Und den Flächeninhalt A erhältst du, wenn du Pi mit 'r Quadrat' multiplizierst. Pi wird auch Kreiszahl genannt... und kann nicht als Bruch geschrieben werden. Der Wert von Pi beträgt ungefähr 3,14. Auch in den Formeln für die Berechnung von Oberfläche und Volumen der Kugel kommt Pi vor...wieder so ähnlich wie beim Kreis. Den Oberflächeninhalt der Kugel erhältst du, indem du 4 mal Pi mal 'r Quadrat' rechnest. Das Volumen der Kugel ist gleich vier Drittel mal Pi mal 'r hoch 3'. Diese Formeln solltest du dir merken...aber keine Sorge, das ist gar nicht so viel, wie es auf den ersten Blick aussieht! Ein kleiner Tipp: Eine Fläche wird ja z.B. in 'Meter hoch 2' angegeben, und das entspricht dem 'r hoch 2' in der Formel für den Oberflächeninhalt. Und die Volumeneinheiten enthalten fast immer ein 'hoch 3', genau wie die Formel für das Volumen der Kugel ein 'r hoch 3'enthält. Wenn du daran denkst, musst du eigentlich nur noch die Zahlen vor dem Pi auswendig können! Wenn in einer Aufgabe der Durchmesser gebeben ist, dann berechnest du zuerst den Radius als die Hälfte des Durchmessers. So, jetzt legen wir mal los und unterstützen Ninja-Nina! Ninja-Ninas Kugel soll einen Radius von 10cm haben. Die Einheit lassen wir in der Rechnung aber weg. Fangen wir mit dem Oberflächeninhalt an. In die Formel setzen wir für 'r' 10 ein. Also...'4 mal Pi mal 10 Quadrat', das ergibt '4 mal Pi mal 100'...oder '400 mal Pi'. Für ein genaues Ergebnis kannst du Pi so stehen lassen. Für ein gerundetes Ergebnis kannst du einen ungefähren Wert für Pi einsetzen und damit weiterrechnen. Dann erhältst du als Ergebnis rund 1256. Also beträgt der Oberflächeninhalt von Ninja-Ninas Kugel etwa 1256 Quadratzentimeter. Ninja-Ninas Folie ist etwa 36 Zentimeter mal 36 Zentimeter groß – sie reicht also aus. Knitterfalten gibt es dabei natürlich auch...aber schöne Verpackungen spielen für Ninjas keine Rolle! Jetzt kommen wir zum Volumen der Kugel. Wir setzten für 'r' wieder 10 in die Volumenformel der Kugel ein. '10 hoch 3 ist 1000', also ist das Volumen der Kugel '4/3 Pi mal 1000'. Das ist '1333 Komma Periode 3 mal Pi'. Mit dem gerundeten Wert für Pi entspricht das etwa '4186 Komma Periode 6'. Das Volumen der Kugel beträgt also ungefähr '4186 Komma Periode 6' Kubikzentimeter. Das sind etwas mehr als vier Liter – zum Glück hat Ninja-Nina 5 Liter Pulver dabei! Ninja-Nina hat also genug Material dabei, um ihre Rauchbombe zu bauen. Währenddessen fassen wir zusammen. Die Formel zur Berechnung des Oberflächeninhalts A einer Kugel mit Radius r lautet: 'A gleich 4 Pi r Quadrat'. Das Volumen einer Kugel berechnest du mit der Formel 'V gleich 4/3 Pi mal r hoch 3'. Für genaue Ergebnisse lässt du Pi stehen...für gerundete Ergebnisse verwendest du einen ungefähren Wert für Pi. Ninja-Nina hat ihre Rauchbombe fertig und nähert sich ihrem Ziel! Oh nein, sie wurde entdeckt!Zeit für die Rauchbombe. Das war wohl zu viel Pulver!

Videos im Thema

Volumen und Oberfläche von Kugeln (1 Videos)

zur Themenseite

Kugel – Oberflächeninhalt & Volumen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kugel – Oberflächeninhalt & Volumen kannst du es wiederholen und üben.

  • Benenne die Eigenschaften von Kreisen und Kugeln.

    Tipps

    Die Oberfläche einer Kugel ähnelt der ebenen Kreislinie, deren Punkte vom Mittelpunkt denselben Abstand haben.

    Der Oberflächeninhalt einer Kugel wird in Einheiten gemessen, die das Quadrat einer Länge enthalten, wie zum Beispiel $\text{cm}^2$ oder $\text m^2$.

    Der Oberflächeninhalt einer Kugel ist viermal so groß wie der Flächeninhalt eines Kreises mit demselben Radius.

    Lösung

    Eine Kugel ist eine räumliche Figur; sie ähnelt dem Kreis als ebene Figur. Die Oberfläche der Kugel entspricht der Kreislinie, das von der Oberfläche eingeschlossene Volumen entspricht der von der Kreislinie umgrenzten Kreisscheibe. Wie die Punkte der Kreislinie vom Mittelpunkt denselben Abstand haben, so besteht auch die Oberfläche der Kugel aus allen Punkten im Raum, die vom Mittelpunkt $M$ denselben Abstand haben.

    Folgende Aussagen sind demnach wahr:

    • „Die Oberfläche einer Kugel besteht aus allen Punkten im Raum, die vom Mittelpunkt $M$ denselben Abstand haben.“
    • „Der Radius eines Kreises ist der Abstand zwischen einem Punkt auf der Kreislinie und dem Mittelpunkt des Kreises.“
    • „Die Fläche eines Kreises mit Radius $r$ beträgt $\pi r^2$.“
    • „Der Oberflächeninhalt einer Kugel mit Radius $r$ ist $4\pi r^2$.“
    Diese Aussagen dagegen sind falsch:

    • „Das Volumen einer Kugel besteht aus allen Punkten, die vom Mittelpunkt $M$ denselben Abstand haben.“ Das Volumen der Kugel besteht aus den Punkten im Raum, die von der Kugeloberfläche eingeschlossen sind. Die Oberfläche der Kugel besteht aus allen Punkten, die vom Mittelpunkt denselben Abstand $r$ haben. Im Inneren liegen alle Punkte, deren Abstand zum Mittelpunkt kleiner als $r$ ist.
    • „Der Radius einer Kugel ist der Abstand zwischen dem höchsten und dem niedrigsten Punkt der Kugel.“ Der größtmögliche Abstand zweier Punkte der Kugeloberfläche ist der Durchmesser. Dieser ist z.B. der Abstand zwischen dem höchsten und dem niedrigsten Punkt der Kugeloberfläche. Der Durchmesser ist doppelt so groß wie der Radius.
    • „Das Volumen einer Kugel wird in $\text{m}^2$ gemessen.“ Das Volumen misst den dreidimensionalen Raum im Inneren der Kugeloberfläche, daher wird es in Einheiten gemessen, die die dritte Potenz einer Länge enthalten, wie z.B. $\text{cm}^3$ oder $\text m^3$. Es gibt aber auch Einheiten, die keine dritte Potenz enthalten, wie z.B. Liter. Dagegen sind Einheiten, die die zweite Potenz einer Länge enthalten, wie z.B. $\text{cm}^2$ oder $\text m^2$, stets Einheiten für Flächeninhalte.
  • Berechne den Oberflächeninhalt einer Kugel.

    Tipps

    Mit Folie kann man gut Dinge einwickeln. Bei runden Objekten wirft die Folie dann aber Falten. Dann braucht man eher etwas mehr Folie.

    In der Formel für das Volumen oder den Rauminhalt einer Kugel kommt der Radius vor. Dort steht er in der dritten Potenz.

    Lösung

    Oberflächeninhalt der Kugel

    Um den Oberflächeninhalt $A$ ihrer Kugel zu berechnen, verwendet Ninja-Nina die Formel:

    • $A=4\pi r^2$.
    In dieser Formel ist $r$ der Radius der Kugel.

    Ninja-Ninas Kugel hat einen Radius von $r=10~\text{cm}$. Diesen Wert setzt sie an Stelle von $r$ in die Formel für den Oberflächeninhalt ein. So erhält sie folgende Rechnung:

    $A=4\pi \cdot 10^2~\text{cm}^2 = 400\pi~\text{cm}^2$.

    Um den Oberflächeninhalt als Dezimalzahl zu schreiben, setzt Ninja-Nina $\pi \approx 3,14$. Jetzt erhält sie folgende Rechnung:

    $A \approx 400 \cdot 3,14~\text{cm}^2 \approx 1256~\text{cm}^2$.

    So viel Folie braucht Ninja-Nina also mindestens.

  • Gib die Formeln für Oberflächeninhalt und Volumen einer Kugel wieder.

    Tipps

    Der Oberflächeninhalt einer Kugel ist viermal so groß wie der Flächeninhalt eines Kreises mit demselben Radius.

    Der Flächeninhalt eines Kreises mit Radius $r$ ist $A=\pi r^2$.

    In der Formeln für den Oberflächeninhalt und das Volumen kommen keine höheren Potenzen von $\pi$ vor.

    Lösung

    Oberflächeninhalt der Kugel

    Die Formel für den Oberflächeninhalt $A$ einer Kugel mit Radius $r$ lautet:

    $A=4\pi r^2$.

    Um den Oberflächeninhalt einer Kugel mit Radius $r=10~\text{cm}$ zu bestimmen, setzen wir in diese Formel $r=10~\text{cm}$ ein. Durch Quadrieren des Radius mitsamt der Einheit erhalten wir den Oberflächeninhalt:

    $A= 4\pi \cdot 10^2~\text{cm}^2 =400\pi~\text{cm}^2$.

    Dies ist der genaue Wert des Oberflächeninhalts. Um zu wissen, welchem Wert in Dezimalzahlen das ungefähr entspricht, setzen wir $\pi\approx 3,14$. Damit erhalten wir:

    $A \approx 400 \cdot 3,14~\text{cm}^2 \approx 1256~\text{cm}^2$.

    $\,$

    Volumen der Kugel

    Für das Volumen einer Kugel mit Radius $r$ gilt die Formel:

    $V = \frac{4}{3}\pi r^3$.

    Um nun das Volumen einer Kugel mit Radius $r=10~\text{cm}$ zu bestimmen, setzen wir $r=10~\text{cm}$ in diese Formel ein. Mit der dritten Potenz des Radius und seiner Einheit erhalten wir das Volumen:

    $A= \frac{4}{3}\pi \cdot 10^3~\text{cm}^3 =\frac{4}{3} \cdot 1000\pi~\text{cm}^3$.

    Wie zuvor beim Oberflächeninhalt ist dies der genaue Wert des Volumens. Um einen Dezimalwert zu erhalten, setzen wir wieder $\pi \approx 3,14$ und notieren von dem Ergebnis nur die Stellen vor dem Komma. So erhalten wir:

    $V \approx \frac{4}{3} \cdot 1000 \cdot 3,14~\text{cm}^3 \approx 4187~\text{cm}^3$.

  • Analysiere die Berechnungen des Oberflächeninhalts und des Volumens.

    Tipps

    Der Flächeninhalt eines Quadrates mit Kantenlänge $2~\text{cm}$ ist $4~\text{cm}^2$.

    Lösung

    Folgende Aussagen sind falsch:

    • „Das Volumen einer Kugel mit Radius $r$ ist kleiner als das eines kreisförmigen Zylinders mit Radius $r$ und Höhe $r$. Denn das Volumen des Zylinders berechnet man wie folgt: Die kreisförmige Grundfläche hat den Flächeninhalt $\pi r^2$. Multipliziert mit der Höhe ergibt sich das Volumen $V= \pi r^3$.“ Die Berechnung des Zylinder-Volumens ist korrekt. Aber der Wert $V= \pi r^3$ ist nicht größer, sondern kleiner als das Volumen einer Kugel mit Radius $r$, denn für die ist ja $V = \frac{4}{3} \pi r^3$.
    • „Der Flächeninhalt eines Quadrates der Kantenlänge $2\pi~\text{cm}$ ist dasselbe wie der Oberflächeninhalt einer Kugel mit Radius $1~\text{cm}$.“ Der Flächeninhalt eines Quadrates mit Kantenlänge $2\pi~\text{cm}$ beträgt $A=(2\pi~\text{cm}) \cdot (2\pi~\text{cm}) = 4\pi^2~\text{cm}^2$, aber der Oberflächeninhalt einer Kugel mit Radius $1~\text{cm}$ ist $A = 4\pi 1^2~\text{cm}^2 = 4\pi~\text{cm}^2$.
    Folgende Aussagen sind richtig:

    • „Eine Kugel vom Radius $r=10~\text{cm}$ hat ein Volumen von etwa $V \approx 4187~\text{cm}^3$. Das Volumen eines Würfels mit Kantenlänge $10~\text{cm}$ ist viel kleiner.“ Das Würfelvolumen beträgt $V=(10~\text{cm})^3 = 1000~\text{cm}^3$. Das ist tatsächlich viel weniger als $4187~\text{cm}^3$.
    • „Der Oberflächeninhalt einer Kugel mit Radius $\frac{1}{4}~\text{m}$ ist kleiner als der Flächeninhalt eines Quadrates mit Kantenlänge $1~\text{m}$.“ Der Flächeninhalt eines solchen Quadrates ist $A=1~\text{m}^2$. Der Oberflächeninhalt beträgt $A= 4\pi r^2 = 4 \pi \cdot \frac{1}{4^2}~\text{m}^2 = \frac{\pi}{4}~\text{m}^2$. Mit $\pi \approx 3,14 < 4$ ist $\frac{\pi}{4} < 1$, d.h., der Oberflächeninhalt der Kugel ist kleiner als der Flächeninhalt des Quadrates.
    • „Der Oberflächeninhalt einer Kugel ist viermal so groß wie der Flächeninhalt des Kreises, der vom Äquator begrenzt wird.“ Die Formel für den Oberflächeninhalt lautet $A = 4\pi r^2$. Der Radius des Äquators ist der Radius der Kugel. Daher hat der Kreis in der Äquatorebene den Flächeninhalt $\pi r^2$. Der Oberflächeninhalt ist also viermal so groß wie der Flächeninhalt des Äquatorkreises.
  • Ordne die Oberflächeninhalte und Volumina zu.

    Tipps

    Der Oberflächeninhalt einer Kugel mit Durchmesser $r$ ist derselbe wie der Flächeninhalt eines Kreises mit Radius $r$.

    Eine Kugel mit dem Radius $r=\frac{3}{2}~\text{cm}$ hat den Oberflächeninhalt:

    $A= 4\pi \frac{3^2}{2^2}~\text{cm}^2 = 9 \pi ~\text{cm}^2$.

    Verdoppelt man den Radius einer Kugel, so vervielfacht sich das Volumen um den Faktor $2^3=8$.

    Lösung

    Zur Berechnung des Oberflächeninhalts $A$ und des Volumens $V$ einer Kugel mit Radius $r$ verwendet Ninja-Nina die Formeln:

    $ \begin{array}{ll} A &= 4\pi r^2 \\ V &= \frac{4}{3} \pi r^3 \end{array} $

    Durch Einsetzen der angegebenen Werte für den Radius $r$ berechnen wir für Ninja-Nina folgende Oberflächeninhalte und Volumina:

    $ \begin{array}{c|c|c} r & A & V \\ \hline 2~\text{cm} & 16~\pi~\text{cm}^2 & \frac{32}{3}\pi~\text{cm}^3 \\ \pi~\text{cm} & 4\pi^3~\text{cm}^2 & \frac{4}{3}\pi^4~\text{cm}^3 \\ \frac{2}{\sqrt{\pi}}~\text{cm} & 16~\text{cm}^2 & \frac{32}{3\sqrt{\pi}}~\text{cm}3 \\ \frac{3}{2}~\text{cm} & 9\pi~\text{cm}^2 & \frac{9\pi}{2}~\text{cm}^3 \end{array} $

    Dieser Tabelle kann Ninja-Nina die Zuordnungen entnehmen.

  • Ordne die Werte für Umfang, Flächeninhalt, Oberflächeninhalt und Volumen den Radien zu.

    Tipps

    Der Oberflächeninhalt einer Kugel mit Radius $r$ entspricht dem Flächeninhalt eines Kreises mit Radius $2r$.

    Zu jedem Radius gehört jeweils höchstens ein Wert für $U$, $A$, $O$ und $V$.

    Der Oberflächeninhalt einer Kugel mit Radius $r=\pi~\text{cm}$ beträgt $\frac{4}{3}\pi \cdot (\pi~\text{cm})^3 = \frac{4}{3} \pi^4~\text{cm}^3$.

    Lösung

    Zur Berechnung des Umfangs $U$ und des Flächeninhalts $A$ eines Kreises mit Radius $r$ bzw. des Oberflächeninhalts $O$ und des Volumens $V$ einer Kugel mit Radius $r$ verwenden wir folgende Formeln:

    $ \begin{array}{ll} U &= 2\pi r \\ A &= \pi r^2 \\ O &= 4\pi r^2 \\ V &= \frac{4}{3} \pi r^3 \end{array} $

    In diese Formeln setzen wir die Werte $r=1~\text m$ und $r=2~\text m$ und $r=\frac{2}{\sqrt{\pi}}~\text m$ ein und erhalten folgende Ergebnisse:

    $ \begin{array}{l|l|l|l|l} r & U & A & O & V \\ \hline 1~\text m & 2\pi~\text m & \pi~\text{m}^2 & 4\pi~\text{m}^2 & \frac{4}{3} \pi~\text{m}^3 \\ 2~\text m & 4\pi~\text m & 4 \pi~\text{m}^2 & 16 \pi~\text{m}^2 & \frac{32}{3} \pi~\text{m}^3 \\ \frac{2}{\sqrt{\pi}}~\text m & 4 \sqrt{\pi}~\text m & 4~\text m^2 & 16~\text m^2 & \frac{32}{3\sqrt{\pi}}~\text m^3 \end{array} $

    Der Tabelle kannst du die jeweiligen Zuordnungen entnehmen.