Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Brüche auf dem Zahlenstrahl – Übung

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 185 Bewertungen
Die Autor*innen
Avatar
Team Digital
Brüche auf dem Zahlenstrahl – Übung
lernst du in der 5. Klasse - 6. Klasse

Brüche auf dem Zahlenstrahl – Übung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Brüche auf dem Zahlenstrahl – Übung kannst du es wiederholen und üben.
  • Stelle den Bruch in einer anderen Schreibweise dar.

    Tipps

    Beispiel:

    $3\frac{1}{5} = \frac{3\cdot 5 +1}{5} = \frac{16}{5}$

    $2\frac{1}{4} \rightarrow$ gemischter Bruch

    $\frac{9}{4} \rightarrow$ unechter Bruch

    Lösung

    Bei den Schreibweisen handelt es sich um unechte und gemischte Brüche.

    Bei einem unechten Bruch ist der Zähler größer als der Nenner.
    Ein gemischter Bruch besteht aus einer ganzen Zahl und einem echten Bruch (hier ist der Zähler kleiner als der Nenner).

    Um einen gemischten Bruch in einen unechten Bruch umzuwandeln, multiplizieren wir die ganze Zahl vor dem Bruch mit dem Nenner und addieren dieses Produkt zum Zähler hinzu. Der Nenner wird beibehalten.
    Um einen unechten Bruch in einen gemischten Bruch umzuwandeln, dividieren wir den Zähler durch den Nenner. Das Ergebnis schreiben wir vor den Bruch und den Rest schreiben wir in den Zähler. Der Nenner wird beibehalten.

    Wir wandeln um:

    • $\frac{7}{4} = \frac{1 \cdot 4 + 3}{4} = 1\frac{3}{4}$
    • $\frac{9}{2} = \frac{4 \cdot 2 + 1}{2} = 4\frac{1}{2}$
    • $3 = \frac{3}{1} = \frac{3 \cdot 4}{1 \cdot 4} = \frac{12}{4}$
    • $1\frac{2}{3} = \frac{1 \cdot 3 + 2}{3} = \frac{5}{3}$
    • $3\frac{1}{3}= \frac{3 \cdot 3 + 1}{3} = \frac{10}{3}$
  • Beschreibe, wie man Brüche am Zahlenstrahl markiert.

    Tipps

    Hier siehst du ein Beispiel.

    Der Zähler befindet sich über dem Bruchstrich und der Nenner unter dem Bruchstrich.

    Lösung

    Um einen Zahlenstrahl zu beschriften, können wir auch Brüche verwenden.

    Wenn wir Brüche auf dem Zahlenstrahl markieren oder ablesen wollen, gibt der Nenner des Bruches immer an, in wie viele gleich große Teilabschnitte die Strecke zwischen zwei ganzen Zahlen eingeteilt ist. Der Nenner befindet sich immer unter dem Bruchstrich. Bei dem Bruch $\frac{3}{4}$ ist der Nenner $4$. Die Strecke zwischen zwei ganzen Zahlen, beispielsweise zwischen $1$ und $2$, wird also in $4$ gleich große Abschnitte geteilt.

    Der Zähler gibt dann die Anzahl der Teilabschnitte an, die dem Wert des Bruches entspricht. Bei $\frac{3}{4}$ ist der Zähler $3$. Daher befindet sich der Bruch nach dem $3$. Teilabschnitt.

    Bei unechten Brüchen, etwa $\frac{5}{4}$, ist es einfacher, wenn wir sie zunächst in gemischte Zahlen umwandeln: $\frac{5}{4} = 1\frac{1}{4}$. So können wir zuerst die ganze Zahl suchen und dann entsprechend viele Schritte von dort aus weitergehen. In diesem Beispiel suchen wir also die Zahl $1$ und gehen von dort noch einen Teilabschnitt weiter.

  • Vervollständige den Zahlenstrahl.

    Tipps

    Zähle jeweils ab, in wie viele gleich große Abschnitte die Strecke zwischen zwei ganzen Zahlen geteilt ist. Dies gibt den Nenner des Bruches an.

    Der Zähler des Bruches gibt dir jeweils die Position an. Ist der Zähler beispielsweise $5$, so ist der Bruch an der fünften Position von links.

    Lösung

    Beim ersten Zahlenstrahl ist die Strecke zwischen zwei ganzen Zahlen jeweils in $4$ gleich große Abschnitte geteilt. Der Nenner der Brüche ist daher $4$. Es sind die Brüche $\frac{3}{4}$ und $\frac{7}{4}$ markiert.

    $\frac{7}{4}$ ist ein unechter Bruch. Wir können auch schreiben:

    $1\frac{3}{4}$

    Beim zweiten Zahlenstrahl ist die Strecke zwischen zwei ganzen Zahlen jeweils in $3$ gleich große Abschnitte geteilt. Der Nenner der Brüche ist daher $3$. Es sind die Brüche $\frac{2}{3}$, $\frac{4}{3}$ und $\frac{5}{3}$ markiert.

    $\frac{4}{3}$ und $\frac{5}{3}$ sind unechte Brüche. Wir können auch schreiben:

    $\frac{4}{3} = 1\frac{1}{3}$

    $\frac{5}{3} = 1\frac{2}{3}$

  • Überprüfe die Beschriftung des Zahlenstrahls.

    Tipps

    Du kannst Brüche erweitern oder kürzen, ohne dass sich der Wert verändert.

    Außerdem kannst du Zahlen größer als $1$ als unechte Brüche oder als gemischte Zahlen darstellen.

    Lösung

    Beim Ablesen von Brüchen am Zahlenstrahl gibt die Zahl im Nenner an, in wie viele gleich große Abschnitte die Strecke zwischen zwei ganzen Zahlen geteilt wird. Im Zähler steht, wie viele Striche die Zahl von der Null entfernt ist.

    Wir zählen also zuerst die Abschnitte zwischen der $0$ und der $1$: Es sind $10$ Abschnitte. Die Mitte ist dabei mit einem etwas längeren Strich markiert.
    Nun ordnen wir die Buchstaben zu:

    • Der Buchstabe A steht beim $6$. Strich. Der zugehörige Bruch lautet $\frac{6}{10}$. Das sind gekürzt $\frac{3}{5}$.
    • Der Buchstabe B steht beim $12$. Strich. Der zugehörige Bruch lautet $\frac{12}{10}$. Das sind gekürzt $\frac{6}{5}$. Wir können auch $1\frac{1}{5}$ schreiben und erkennen daran, dass B genau zwei Striche nach der $1$ markiert ist.
    • Der Buchstabe C steht beim $15$. Strich. Der zugehörige Bruch lautet $\frac{15}{10}$. Das sind gekürzt $\frac{3}{2}$. Wir können auch $1\frac{1}{2}$ schreiben und erkennen daran, dass C in der Mitte zwischen der $1$ und der $2$ markiert ist.
    • Der Buchstabe D steht bei der Zahl $2$. Wir können diese als Bruch schreiben, die einfachste Schreibweise ist dabei $\frac{2}{1}$. Wir können dies auch erweitern zu $\frac{20}{10}$. Das entspricht der Position beim $20$. Strich.
  • Gib an, welche Laternen sich an der Stelle $\frac{3}{2}$ und $\frac{4}{2}$ auf dem Zahlenstrahl befinden.

    Tipps

    Der Nenner des Bruches gibt an, in wie viele gleich große Teilabschnitte die Strecke zwischen zwei ganzen Zahlen unterteilt ist.

    Der Zähler gibt die Anzahl dieser Teilabschnitte an, die dem Wert des Bruches entsprechen.

    Hier ist der $3$. Baum von links markiert, der sich am Zahlenstrahl an der Stelle $\frac{2}{3}$ befindet.

    Lösung

    Wir untersuchen zunächst, in wie viele gleich große Teilabschnitte die Strecke zwischen zwei ganzen Zahlen eingeteilt wird: Der Nenner der Brüche gibt uns dies vor.
    Bei einem Bruch steht der Nenner unter dem Bruchstrich.
    Beide Brüche haben den Nenner $2$. Die Strecke zwischen zwei ganzen Zahlen wird also in $2$ gleich große Teilabschnitte geteilt.

    Der Zähler gibt uns dann die Position an. Bei dem Bruch $\frac{3}{2}$ müssen wir drei Striche von links abzählen. Die Laterne an dieser Stelle ist im Bild pink gefärbt. Es handelt sich um die $\mathbf{4}$. Laterne von links.

    Für die Laterne an der Position $\frac{4}{2}$ müssen wir entsprechend vier Teilabschnitte nach rechts gehen. Wir landen bei der Zahl $2$, denn $\frac{4}{2} = 2$. Das ist die $\mathbf{5}$. Laterne von links.

  • Komplettiere den Zahlenstrahl mit vollständig gekürzten Brüchen.

    Tipps

    Suche zunächst die $1$ am Zahlenstrahl. Sie ist nicht eingetragen, aber du kannst sie leicht finden, da die $2$ eingetragen ist. Zähle nun, in wie viele Abschnitte die Strecke zwischen $0$ und $1$ unterteilt ist. Dies gibt dir den Nenner der Brüche vor.

    Achte darauf, die Brüche vollständig zu kürzen. Dabei dividierst du Zähler und Nenner durch die gleiche natürliche Zahl.

    Lösung

    Die Strecke zwischen der $0$ und der $1$ ist in sechs gleich große Abschnitte geteilt. Der Nenner ist also $6$.

    • Der erste markierte Bruch ist an der vierten Postion, der zugehörige Bruch lautet $\frac{4}{6}$. Wir können ihn noch kürzen zu $\frac{2}{3}$.
    • Der zweite markierte Bruch ist an der neunten Postion, der zugehörige Bruch lautet $\frac{9}{6} = \frac{3}{2}$.
    • Der dritte markierte Bruch ist an der $19$. Postion, der zugehörige Bruch lautet $\frac{19}{6}$.
    • Der vierte markierte Bruch ist an der $26$. Postion, der zugehörige Bruch lautet $\frac{26}{6}$. Wir können ihn noch kürzen zu $\frac{13}{3}$.
30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.060

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.922

Lernvideos

36.999

Übungen

34.261

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden