Gemeine Brüche in gemischte Brüche umwandeln
Wenn du Brüche umrechnen möchtest, bist du hier genau richtig. Lerne, wie du gemischte Zahlen in unechte Brüche umwandelst. Du erfährst, wie du den Nenner anpasst und was beim Umwandeln wichtig ist. Interessiert? Finde alle Antworten im folgenden Text!
- Einführung: Umrechnen von Brüchen
- Was sind Brüche? – Wiederholung
- Unechte Brüche in gemischte Zahlen umwandeln – Erklärung
- Gemischte Zahlen in unechte Brüche umwandeln – Erklärung

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Gemeine Brüche in gemischte Brüche umwandeln Übung
-
Bestimme die Umwandlung des gemischten Bruchs in einen gemeinen Bruch.
TippsErweitere die ganze Zahl eines gemischten Bruches mit dem Nenner des Bruches.
Hier ist eine Beispielrechnung:
$ 2\frac{3}{4} = \frac{2 \cdot 4}{1 \cdot 4} + \frac{3}{4} = \frac{11}{4} $
LösungEin gemischter Bruch setzt sich aus einer ganzen Zahl (hier $2$) und einem echten Bruch (hier $\frac 5{12}$) zusammen. Man schreibt die beiden Zahlen direkt nebeneinander (hier $2\frac 5{12}$) und meint damit, dass sich die Zahl insgesamt aus dem jeweiligen Ganzen und dem Bruch zusammensetzt. Man addiert also diese beiden Teile, wenn man einen gemeinen Bruch erhalten möchte.
Um einen gemischten Bruch in einen gemeinen bzw. unechten Bruch zu verwandeln, kannst du zuerst die ganze Zahl mit dem Nenner des Bruches erweitern. Du erhältst dann zwei Brüche mit demselben Nenner. Du kannst sie addieren, indem du die Zähler addierst und den Nenner beibehältst.
Damit erhältst du folgende Rechnung:
$2\dfrac 5{12}=2+\dfrac 5{12}=\dfrac {2}{1}+\dfrac 5{12}=\dfrac{2\cdot 12}{1\cdot 12}+\dfrac 5{12}=\dfrac{24}{12}+\dfrac5{12}=\dfrac{24+5}{12}=\dfrac{29}{12}$
-
Vergleiche die Brüche.
TippsDu kannst einen gemischten Bruch in einen unechten Bruch umwandeln, indem du die ganze Zahl als Bruch mit dem Nenner $1$ schreibst, mit dem Nenner des gegebenen Bruches erweiterst und die beiden Brüche addierst.
Verwende bei der Darstellung als gemischten Bruch immer gekürzte Brüche.
Hier ist eine Beispielrechnung:
$3\frac{4}{5} = \frac{3}{1} + \frac{4}{5} = \frac{15}{5} + \frac{4}{5} = \frac{19}{5}$
LösungAus einem unechten Bruch kannst du einen gemischten Bruch machen, indem du den Zähler durch den Nenner mit Rest dividierst. Die Anzahl, wie oft der Nenner in dem Zähler vorkommt, ist die ganze Zahl des gemischten Bruches. Der verbleibende Bruch in der Darstellung als gemischter Bruch besteht aus dem Rest der Division als Zähler und dem ursprünglichen Nenner als Nenner. Diesen Bruch kannst du aber ggf. noch kürzen. Um die Division zu vereinfachen, ist es nützlich, den unechten Bruch vor der Division zu kürzen.
So erhältst du folgende Gleichungen:
- $\frac{5}{4} = 1 \frac{1}{4}$, denn $5:4 = 1$ Rest $1$
- $\frac{16}{12} = 1\frac{1}{3}$, denn $\frac{16}{12} = \frac{4}{3}$ und $4:3 = 1$ Rest $1$
- $\frac{29}{12} = 2\frac{5}{12}$, denn $29:12 = 2$ Rest $5$
- $\frac{24}{12} = 2$, denn $24:12 = 2$
-
Vergleiche die Brüche.
TippsDividiere den Zähler eines unechten Bruches durch den Nenner, um den zugehörigen gemischten Bruch zu bestimmen.
Der Quotient der Division Zähler : Nenner ist die ganze Zahl des gemischten Bruches, der Divisor ist der Nenner des (ungekürzten) Bruches.
Hier ist ein Beispiel:
$\frac{23}{7} = 3 \frac{2}{7}$, denn $23:7 = 3$ Rest $2$
LösungDu kannst jeden unechten Bruch in einen gemischten Bruch umwandeln, indem du den Zähler durch den Nenner dividierst. Der Quotient ist die ganze Zahl des gemischten Bruches, der Divisor ist der Nenner und der Rest ist der Zähler des Bruches in dem gemischten Bruch.
Zur Probe kannst du umgekehrt den gemischten Bruch zu einem unechten Bruch erweitern, indem du die ganze Zahl mit dem Nenner erweiterst und die beiden Brüche addierst.
So findest du folgende Zuordnungen:
- $3\frac{4}{5} = \frac{19}{5}$, denn $3\frac{4}{5} = \frac{3 \cdot 5}{1 \cdot 5} + \frac{4}{5} = \frac{15+4}{5} = \frac{19}{5}$
- $2\frac{5}{7} = \frac{19}{7}$, denn $19:7 = 2$ Rest $5$
- $5\frac{4}{7} = \frac{39}{7}$, denn $5\frac{4}{7} = \frac{5 \cdot 7}{1 \cdot 7} + \frac{4}{7} = \frac{35+4}{7} = \frac{39}{7}$
- $9\frac{2}{3} = \frac{29}{3}$, denn $29:3 = 9$ Rest $2$
- $7\frac{1}{4} = \frac{29}{4}$, denn $7\frac{1}{4} = \frac{7 \cdot 4}{1 \cdot 4} + \frac{1}{4} = \frac{28+1}{4} = \frac{29}{4}$
-
Analysiere die unechten und die gemischten Brüche.
TippsErweitere die ganze Zahl des gemischten Bruches mit dem Nenner des Bruches.
Kürze die gemischten Brüche.
Beispiel:
$1\frac{4}{8} = 1\frac{1}{2}$
Dividiere den Zähler des unechten Bruches durch den Nenner, um die ganze Zahl des gemischten Bruches zu erhalten.
LösungUm die unechten Brüche in gemischte umzuwandeln, kannst du jeweils den Zähler durch den Nenner dividieren. Der Quotient ist die gesuchte ganze Zahl, der Rest der Zähler und der Divisor der Nenner des ungekürzten Bruches.
So erhältst du folgende Gleichungen:
- $\frac{54}{8} = 6\frac{3}{4}$, denn $54:8 = 6$ Rest $6$,also $\frac{54}{8} = 6 \frac{6}{8} = 6 \frac{3}{4}$
- $\frac{50}{6} = 8\frac{1}{3}$, denn $50:6 = 8$ Rest $2$, also $\frac{50}{6} = 8\frac{2}{6} = 8\frac{1}{3}$
Umgekehrt kannst du gemischte Brüche in unechte Brüche umwandeln, indem du die ganze Zahl mit dem Nenner des Bruches erweiterst und zu dem Bruch addierst.
So erhältst du folgende Gleichungen:
- $3\frac{5}{8} = \frac{29}{8}$, denn $3\frac{5}{8} = \frac{3 \cdot 8}{8} + \frac{5}{8} = \frac{24+5}{8} = \frac{29}{8}$
- $4\frac{7}{9} = \frac{43}{9}$, denn $4\frac{7}{9} = \frac{4 \cdot 9}{9} + \frac{7}{9} = \frac{36+7}{9} = \frac{43}{9}$
-
Vergleiche die Brüche.
TippsErweitere oder kürze die Brüche, um die Gleichungen zu überprüfen.
Beim Erweitern eines Bruches multiplizierst du Zähler und Nenner mit derselben Zahl.
Durch Erweitern mit $3$ wird aus dem Bruch $\frac{2}{5}$ der Bruch $\frac{6}{15}$, denn es gilt:
$ \frac{2}{5} = \frac{2 \cdot 3}{5 \cdot 3} = \frac{6}{15} $
LösungBeim Erweitern eines Bruches multiplizierst du Zähler und Nenner des Bruches mit derselben Zahl. Dadurch ändert sich das Verhältnis von Zähler und Nenner (und daher der Bruchteil, den der Bruch beschreibt) nicht. Umgekehrt kannst du einen Bruch kürzen, indem du Zähler und Nenner durch dieselbe Zahl dividierst.
Folgende Gleichungen sind richtig:
- $\frac{16}{12} = \frac{4}{3}$, denn $\frac{16}{12} = \frac{4 \cdot 4 }{3 \cdot 4} = \frac{4}{3}$ (durch Kürzen mit $4$)
- $\frac{5}{4} = \frac{10}{8}$, denn $\frac{5}{4} = \frac{5 \cdot 2}{4 \cdot 2} = \frac{10}{8}$ (durch Erweitern mit $2$)
- $\frac{5}{3} = \frac{20}{12}$, denn $\frac{5}{3} =\frac{5 \cdot 2}{3 \cdot 2} = \frac{10}{6} = \frac{10 \cdot 2}{6 \cdot 2}= \frac{20}{12}$ (durch zweimaliges Erweitern mit $2$)
Folgende Gleichungen sind falsch:
- $\frac{20}{12} \neq \frac{10}{3}$, denn $\frac{20}{12} = \frac{5}{3} \neq \frac{10}{3}$ (durch Kürzen mit $4$)
- $\frac{5}{4} \neq \frac{4}{5}$, denn $\frac{5}{4} = \frac{5 \cdot 5}{4 \cdot 5} = \frac{25}{20}$ (durch Erweitern mit $5$), aber $\frac{4}{5} = \frac{4 \cdot 4}{5 \cdot 4} = \frac{16}{20}$ (durch Erweitern mit $4$)
-
Prüfe die Gleichungen.
TippsWandle jeweils beide Seiten einer Gleichung in einen unechten oder gemischten Bruch um.
LösungFolgende Gleichungen sind richtig:
- $\frac{23}{8} = 3\frac{1}{2} - \frac{5}{8}$, denn auf der rechten Seite erhältst du $3\frac{1}{2} - \frac{5}{8} = \frac{7}{2} - \frac{5}{8} = \frac{28}{8} - \frac{5}{8} = \frac{23}{8} $
- $\frac{19}{7} = 4 - \frac{9}{7}$, denn durch Erweitern mit $7$ erhältst du für die rechte Seite $4 - \frac{9}{7} = \frac{28}{7} - \frac{9}{7} = \frac{19}{7}$
- $2\frac{3}{5} + 3\frac{2}{3} = \frac{94}{15}$, denn durch Erweitern und Zusammenfassen der gemischten Brüche auf der rechten Seite erhältst du $2\frac{3}{5} + 3\frac{2}{3} = \frac{13}{5} + \frac{11}{3} = \frac{39}{15} + \frac{55}{15} = \frac{94}{15} (= 6 \frac{4}{15})$
Folgende Gleichungen sind falsch:
- $\frac{19}{5} \neq \frac{8}{10} + \frac{14}{5}$, denn auf der rechten Seite erhältst du $\frac{8}{10} + \frac{14}{5} = \frac{4}{5} + \frac{14}{5} = \frac{18}{5} \neq \frac{19}{5}$
- $\frac{28}{3} \neq 10 - \frac{4}{3}$, denn die rechte Seite ergibt $10-\frac{4}{3} = \frac{30}{3} - \frac{4}{3} = \frac{26}{3} (= 8\frac{2}{3}) \neq \frac{28}{3}$
- $\frac{3}{5} + \frac{5}{3} \neq \frac{23}{15}$, denn die linke Seite ergibt $\frac{3}{5} + \frac{5}{3} = \frac{3 \cdot 3}{5 \cdot 3} + \frac{5 \cdot 5}{3 \cdot 5} = \frac{34}{15} (= 2\frac{4}{15}) \neq \frac{23}{15}$
9.360
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.211
Lernvideos
38.688
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt