sofatutor 30 Tage
kostenlos ausprobieren

Videos & Übungen für alle Fächer & Klassenstufen

Scheinbrüche und unechte Brüche 04:36 min

Textversion des Videos

Transkript Scheinbrüche und unechte Brüche

Thema dieses Films sind Brüche, die nicht ganz echt sind. Unechte Brüche, Scheinbrüche und gemischte Zahlen. Scheinbruch klingt nach Mogeln, als ob jemand zum Beispiel einen Arm in Gips hat, obwohl der Arm gar nicht gebrochen ist. Tatsächlich ist ein Scheinbruch in der Mathematik etwas ganz Ähnliches. Nehmen wir an, wir haben mehrere Fünftel von einer Pizza. Wenn wir fünf dieser Fünftel zusammenlegen, ergibt dies wieder, richtig, eine ganze Pizza. Also tun diese 5/5 nur so, als wären sie ein Bruch, sie sind ein Scheinbruch, beziehungsweise mathematisch gesprochen ein Ganzes. Natürlich gilt das auch für 3/3, 11/11 oder 150/150. Jetzt holen wir zu den 5/5 Pizza, die wir schon auf dem Teller haben, noch einmal 5/5 aus unserem mathematischen Pizzaofen. Das sind jetzt also 10/5, oder zwei ganze, Pizzen. Denn auch zehn Fünftel ist ein Scheinbruch. Offenbar haben bei diesen Scheinbrüchen der Zähler, also die Zahl über dem Bruchstrich, und der Nenner, also die Zahl unter dem Bruchstrich, etwas miteinander zu tun. Wenn wir uns die Einmaleins-Reihe des Nenners ansehen, taucht darin der Zähler auf. 5=15 und 10=25. Wir erkennen eine mathematische Regel, bei den Scheinbrüchen ist der Zähler ein Vielfaches des Nenners. Durch Kürzen lassen sich Scheinbrüche daher in ganze Zahlen umwandeln. Mit diesem Wissen können wir Scheinbrüche einfach aufspüren. Zum Beispiel bei diesen 56/7. Wir sehen in der Siebenerreihe nach und stellen fest, 56=8*7, der Zähler ist also das Achtfache des Nenners. Damit ist 56/7 ein Scheinbruch und mathematisch gesehen acht Ganze, also die Zahl acht. Doch noch einmal zurück zu der Pizza, die wir aus 5/5 zusammengesetzt hatten. Wenn wir noch ein weiteres Fünftel dazulegen, haben wir 6/5. Die sind nun aber nicht mehr Teil eines Ganzen, sechs Fünftel sind mehr als ein Ganzes. Einen solchen Bruch, dessen Zähler größer ist als sein Nenner, nennt man einen unechten Bruch. Im Gegensatz zu einem echten Bruch, bei dem der Zähler immer kleiner ist als der Nenner, wie zum Beispiel bei 2/5. Ein unechter Bruch wie 6/5 besteht aus zwei Teilen, zum einen aus fünf Fünfteln, die zusammen ein Ganzes ergeben und dann noch aus einem Fünftel mehr. Das kann man auch anders schreiben, nämlich als 1 1/5 und das ergibt eine gemischte Zahl, also die Summe aus einer natürlichen Zahl, hier der eins, und einem echten Bruch, dem 1/5. Gemischte Zahlen begegnen uns im Alltag häufig. Wir können Limonade zum Beispiel in eineinhalb Liter-Flaschen kaufen, darin ist dann genauso viel Limo wie in drei Halbliter-Flaschen. Und auch der Handwerker muss sich mit gemischten Zahlen auskennen. Wasserrohre können nämlich entweder eineinhalb Zoll oder auch nur eineinviertel Zoll dick sein. Sehen wir uns das noch einmal im Überblick an: Echte Brüche sind Teile eines Ganzen, bei ihnen ist der Zähler kleiner als der Nenner. Bei unechten Brüchen ist der Zähler größer als der Nenner, sie bestehen also aus einem oder mehreren Ganzen und einem echten Bruch. Deswegen kann man unechte Brüche auch als gemischte Zahlen schreiben, also als Summe aus einer natürlichen Zahl und einem echten Bruch. Die Addition spricht man nicht mit, man muss sie sich aber immer dazu denken. Scheinbrüche schließlich sind ganze Zahlen, die sich nur als Brüche tarnen. Bei ihnen ist der Zähler immer ein Vielfaches des Nenners.

27 Kommentare
  1. zu schnell erkärt dnn vertsht man das net!!

    Von Tatjanawinn, vor 11 Monaten
  2. schön erklärt

    Von Heikekunz, vor etwa einem Jahr
  3. Hallo Yiren Y.,
    Bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Franziska H., vor mehr als einem Jahr
  4. Hä!?

    Von Yiren Y., vor mehr als einem Jahr
  5. Megaaaaaa

    Von Fanina V., vor fast 2 Jahren
Mehr Kommentare

Scheinbrüche und unechte Brüche Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Scheinbrüche und unechte Brüche kannst du es wiederholen und üben.

  • Definiere die Begriffe „Scheinbruch“, „unechter Bruch“ und „echter Bruch“.

    Tipps

    Sieh dir folgende Beispiele an:

    • Scheinbruch: $\frac {16}8$
    • unechter Bruch: $\frac {9}8$
    • echter Bruch: $\frac 78$
    • gemischte Zahl: $1\frac 18$

    Hier siehst du, wie sich ein Bruch zusammensetzt:

    • Über dem Bruchstrich steht der Zähler $Z$.
    • Dann kommt der Bruchstrich, welcher einem Geteiltzeichen gleicht.
    • Unter dem Bruchstrich steht der Nenner $N$.
    Lösung

    Scheinbrüche:

    Bei Scheinbrüchen ist der Zähler $Z$ ein Vielfaches von dem Nenner $N$. Es handelt sich hierbei also eigentlich nicht um einen Bruch, sondern um eine ganze Zahl. Es gilt:

    • $\dfrac ZN=\dfrac {k\cdot N}N$ mit $k\in \mathbb{Z}$
    Folgende Brüche sind demnach zum Beispiel Scheinbrüche: $\dfrac 84$; $\dfrac 42$; $\dfrac {81}{9}$

    Unechte Brüche:

    Unechte Brüche sind Brüche, deren Zähler größer sind als ihre Nenner. Man kann solche Brüche daher in ganze Zahlen und echte Brüche zerlegen, also als gemischte Zahl angeben. Es gilt also:

    • $\dfrac ZN$ mit $Z>N$
    Beispielsweise sind die folgenden Brüche unechte Brüche:

    • $\dfrac 54=\dfrac 44+\dfrac 14=1+\dfrac 14=1\dfrac 14$
    • $\dfrac 32=\dfrac 22+\dfrac 12=1+\dfrac 12=1\dfrac 12$
    • $\dfrac {20}9=\dfrac {18}9+\dfrac 29=2+\dfrac 29=2\dfrac 29$
    Echte Brüche:

    Echte Brüche sind Brüche, deren Nenner größer sind als ihre Zähler. Es gilt:

    • $\dfrac ZN$ mit $Z<N$
    Echte Brüche sind zum Beispiel: $\dfrac 12$; $\dfrac 35$; $\dfrac 79$

  • Gib an, um welche Bruchart es sich bei den gegebenen Brüchen handelt.

    Tipps

    Bei Scheinbrüchen ist der Zähler ein Vielfaches des Nenners. Es handelt sich hierbei also eigentlich nicht um einen Bruch, sondern um ganze Zahlen.

    Echte Brüche sind Brüche, deren Zähler kleiner sind als ihre Nenner.

    Gemischte Zahlen setzen sich aus ganzen Zahlen und echten Brüchen zusammen.

    Lösung

    Bei Scheinbrüchen ist der Zähler ein Vielfaches des Nenners. Es handelt sich hierbei also eigentlich nicht um einen Bruch, sondern um ganze Zahlen.

    Echte Brüche sind Brüche, deren Zähler kleiner sind als ihre Nenner.

    Gemischte Zahlen setzen sich aus ganzen Zahlen und echten Brüchen zusammen.

    Damit können wir die Brüche den jeweiligen Brucharten wie folgt zuordnen:

    Scheinbruch

    • $\dfrac 55=1$
    • $\dfrac {10}{5}=2$
    • $\dfrac {11}{11}=1$
    • $\dfrac {150}{150}=1$
    Echter Bruch

    • $\dfrac {2}5$
    • $\dfrac {1}5$
    Gemischte Zahl

    • $1\dfrac {1}5$
    • $1\dfrac {1}2$
    • $1\dfrac {1}4$
  • Ordne die gegebenen Brüche den jeweiligen Brucharten zu.

    Tipps

    Für den Zähler $Z$ und Nenner $N$ gelten folgende Beziehungen:

    • Scheinbruch: $Z=kN$ mit $k\in\mathbb{Z}$
    • echter Bruch: $Z<N$
    • unechter Bruch: $Z>N$

    Eine gemischte Zahl setzt sich aus einer ganzen Zahl und einem echten Bruch zusammen.

    Lösung

    Ein Bruch setzt sich aus Zähler, Bruchstrich und Nenner zusammen. Der Zähler steht über dem Bruchstrich und der Nenner unter ihm. Für den Zähler $Z$ und Nenner $N$ gelten folgende Beziehungen:

    • Scheinbruch: $Z=kN$ mit $k\in\mathbb{Z}$ (der Zähler ist also ein Vielfaches des Nenners)
    • Echter Bruch: $Z<N$
    • Unechter Bruch: $Z>N$
    Eine gemischte Zahl setzt sich aus einer ganzen Zahl und einem echten Bruch zusammen.

    Demnach können wir die gegebenen Brüche den Brucharten wie folgt zuordnen:

    Scheinbruch

    • $\dfrac {15}3$, denn $15:3=5$
    • $\dfrac {21}7$, denn $21:7=3$
    • $\dfrac {28}{4}$, denn $28:4=7$
    • $\dfrac {56}{8}$, denn $56:8=7$
    Unechter Bruch

    • $\dfrac {9}7$, denn $9>7$
    • $\dfrac {7}{6}$, denn $7>6$
    • $\dfrac {12}{7}$, denn $12>7$
    Echter Bruch

    • $\dfrac 69$, denn $6<9$
    • $\dfrac 27$, denn $2<7$
    • $\dfrac 2{17}$, denn $2<17$
    Gemischte Zahl

    • $2\dfrac 13$
    • $1\dfrac {11}{13}$
  • Erschließe die zugehörigen gemischten Zahlen.

    Tipps

    Überlege, wie oft der Nenner in den Zähler passt. Daraus resultiert eine ganze Zahl und ein Rest. Schreibe die ganze Zahl auf. Füge an diese einen Bruch an, dessen Zähler dem Rest entspricht. Der Nenner bleibt gleich.

    Sieh dir folgendes Beispiel an: $~\frac 73$

    Da wir $7:3=2$ mit Rest $1$ erhalten, können wir folgende gemischte Zahl aufstellen: $~2\frac 13$

    Lösung

    Wenn wir einen unechten Bruch in eine gemischte Zahl umwandeln möchten, gehen wir wie folgt vor:

    1. Wir überlegen uns, wie oft der Nenner in den Zähler passt. Diese Überlegung liefert uns eine ganze Zahl und einen Rest.
    2. Wir schreiben die ganze Zahl auf und fügen an diese einen Bruch an, dessen Zähler dem Rest entspricht. Der Nenner bleibt gleich.
    So erhalten wir die folgenden gemischten Zahlen:

    • $\dfrac 83=2\dfrac 23$, denn $8:3=2$ mit Rest $2$
    • $\dfrac {10}3=3\dfrac 13$, denn $10:3=3$ mit Rest $1$
    • $\dfrac 43=1\dfrac 13$, denn $4:3=1$ mit Rest $1$
    • $\dfrac {14}3=4\dfrac 23$, denn $14:3=4$ mit Rest $2$
  • Vervollständige die Übersicht zu einem Bruch sowie die Eigenschaften echter und unechter Brüche.

    Tipps

    Der Nenner gibt die Gesamtheit der Anteile an und der Zähler sagt, wie viele dieser Teile betrachtet werden. Betrachtet man die Hälfte einer Pizza, so schreibt man $\frac 12$.

    Bei einem echten Bruch ist die Zahl über dem Bruchstrich kleiner als die Zahl unter dem Bruchstrich.

    Lösung

    Brüche beschreiben einen Teil eines Ganzen. Möchtest du zum Beispiel die Hälfte eines Ganzen angeben, so schreibst du $\frac 12$. Die $1$ ist dabei der Zähler und die $2$ der Nenner des Bruchs $\frac 12$. Es gilt also:

    • $\dfrac{\text{Z}\ddot{\text{a}}\text{hler}\ Z}{\text{Nenner}\ N}$
    Der Nenner steht also unter dem Bruchstrich. Er gibt an, in wie viele Teile ein Ganzes geteilt wird. Der Zähler steht über dem Bruchstrich und gibt an, wie viele solcher Teile betrachtet werden.

    • Bei einem echten Bruch ist der Zähler kleiner als der Nenner. Es gilt also: $~Z<N$
    • Bei einem unechten Bruch ist der Zähler größer als der Nenner. Es gilt also: $~Z>N$
  • Ermittle die jeweiligen Brüche.

    Tipps

    Überlege dir, wie viele Teile das Ganze hat. Dann legst du fest, wie viele dieser Teile gefragt sind.

    Lösung

    Beispiel 1

    Da zwei identische Torten in insgesamt $40$ gleich große Stücke geteilt wurden, setzt sich eine Torte aus $20$ Stücken zusammen. $7$ Stücke sind übrig. Das heißt, dass eine Torte komplett gegessen wurde. Von der anderen wurden $20-7=13$ Stücke gegessen. Damit ist also ein Anteil von $\frac {13}{20}$ der zweiten Torte gegessen worden.

    Beispiel 2

    In der Klasse sind insgesamt $20$ Schüler/-innen, von denen $3$ krank sind. Damit können $20-3=17$ Schüler/-innen an dem Ausflug teilnehmen. Das entspricht einem Anteil von $\frac {17}{20}$ der Schüler/-innen der Klasse.

    Beispiel 3

    Sophie möchte $12-4=8$ Abendkleider verkaufen. $4$ von diesen $8$ Kleidern sind rot. Der Anteil roter Kleider an allen Kleidern, die sie verkaufen möchte, beträgt somit $\frac 48=\frac {1}{2}$.