30 Tage kostenlos testen: Mehr Spaß am Lernen.
30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

30 Tage kostenlos testen

Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck – Übungen

Mit Spaß üben und Aufgaben lösen

Entschuldige, diese Übung ist zurzeit nur auf Tablets und Computer verfügbar. Um die Übung zu machen, logge dich bitte mit einem dieser Geräte ein.

Brauchst du noch Hilfe? Schau jetzt das Video zur Übung Sinus, Cosinus und Tangens – Längenbestimmung im Dreieck

Nach dem Schauen dieses Videos wirst du in der Lage sein, Längenbestimmungen in rechtwinkligen Dreiecken durch Anwendung des Sinus, Kosinus und Tangens durchzuführen.

Zunächst lernst du, wo du die Katheten und Hypotenuse bei einem rechtwinkligen Dreieck findest. Anschließend definieren wir die trigonometrischen Beziehungen Sinus, Kosinus und Tangens. Abschließend lernst du, wie du ausgehend von einem spitzen Winkel und einer Seitenlänge eines rechtwinkligen Dreiecks entscheiden kannst, welche der drei trigonometrischen Beziehungen für die Berechnung der fehlenden Seiten geeignet sind.

Lerne etwas über die Längenbestimmung in rechtwinkligen Dreiecken, indem du dir von Kevin die trigonometrischen Beziehungen Sinus, Kosinus und Tangens zeigen lässt.

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie das rechtwinklige Dreieck, die trigonometrischen Beziehungen, den Sinus, den Kosinus, den Tangens, den Winkel, die Seitenlänge, die Kathete und die Hypotenuse.

Bevor du dieses Video schaust, solltest du bereits wissen, was ein rechtwinkliges Dreieck und die Bezeichnungen Kathete und Hypotenuse sind.

Nach diesem Video wirst du darauf vorbereitet sein, den Sinus- und Kosinussatz zu lernen.

Zum Video
Aufgaben in dieser Übung
Nenne die trigonometrischen Sätze.
Berechne die Höhe der Freiheitsstatue.
Berechne die Entfernung zum Eiffelturm.
Berechne die Höhe der Bäume in Kevins Garten.
Gib wieder, was du über rechtwinklige Dreiecke gelernt hast.
Ermittle die unbekannten Seitenlängen sowie den dritten Winkel.