Termumformungen ohne Variablen
Was sind Terme und Termumformungen? Terme sind Rechenausdrücke, die aus Zahlen, Variablen, Klammern und Rechenzeichen bestehen. In diesem Text wird erklärt, wie Terme umgeformt werden können, um sie einfacher zu berechnen. Du wirst die Regel für die Reihenfolge der Punkt- vor Strichrechnung kennenlernen und Übungen lösen, um deine Fähigkeiten zu testen. Interessiert dich das? Dann findest du all das und noch mehr im folgenden Text!

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.

Was ist ein Term?

Rechenregeln in Termen

Terme vereinfachen

Terme durch Rechenbäume beschreiben

Rechenbäume lösen

Terme aufstellen und berechnen

Aus gegebenen Daten Terme aufstellen und berechnen

Schlüsselwörter für Addition und Subtraktion

Termumformungen ohne Variablen

Termumformungen mit Variablen
Termumformungen ohne Variablen Übung
-
Gib die Grundregeln beim Rechnen mit Termen wieder.
TippsLöse bei Termen mit mehreren Klammern immer zuerst die innere Klammer:
- $100:(3\cdot(3+4))=100:(3\cdot7)$
Multiplikationen führst du immer vor Additionen aus:
$3+7\cdot2=3+14$
Bei gleichwertigen Operationen beginnst du mit dem Rechnen wie beim Lesen auf der linken Seite.
LösungBeim Rechnen mit Termen musst du Folgendes beachten:
Für alle Schritte gilt:
- Punktrechnung vor Strichrechnung
- Von links nach rechts
Bei komplizierteren Termen musst du außerdem auf Folgendes achten:
- Innere Klammer zuerst: $2\cdot(3\cdot9-(9:3+4))+8$
- Nächstäußere Klammer: $2\cdot(3\cdot9-7)+8$
- Term ohne Klammern: $2\cdot20+8$
-
Beschreibe, wie du den folgenden Term vereinfachen kannst.
TippsBedenke, dass immer Punkt- vor Strichrechnung gilt.
Bei mehreren Klammern beginnst du immer bei der ganz inneren.
LösungFolgender Term ist gegeben:
- $4\cdot (2-8:(4\cdot12-6\cdot7-4))+8$
- $4\cdot (2-8:(48-42-4))+8$
- $4\cdot (2-8:2)+8$
Zunächst die Division ($8:2=4$):
- $4\cdot (2-4)+8$
- $4\cdot (-2)+8$
- $-8+8$
-
Vereinfache die Terme so weit wie möglich.
TippsSchaue dir dieses Beispiel an:
$3\cdot (4+5\cdot 2)$
$=3\cdot (4+10)$
$=3\cdot (14)$
$=42$
Löse erst alle Multiplikationen und Divisionen in einer Klammer, dann die Additionen und Subtraktionen.
LösungBeispiel 1: $~3\cdot (2+3\cdot(12:6-3\cdot7+20))-8$
Zuerst betrachten wir die innere Klammer und multiplizieren dort:
$=3\cdot (2+3\cdot(2-21+20))-8$
Schließlich lösen wir die innere Klammer auf:
$= 3\cdot (2+3\cdot 1)-8$
Wir multiplizieren in der äußeren Klammer:
$= 3\cdot (2+3)-8$
Nun lösen wir die äußere Klammer auf:
$=3\cdot 5-8$
Nun im Term Punkt- vor Strichrechnung
$=15-8$
Zuletzt die Subtraktion:
$=7$
Beispiel 2: $~(16+2\cdot(4:2-1\cdot7-10)):6$
Zuerst betrachten wir die innere Klammer und multiplizieren und dividieren dort:
$=(12+2\cdot(2-7-10)):6$
Schließlich lösen wir die innere Klammer auf:
$= (12+2\cdot(-15)):6$
Wir multiplizieren in der äußeren Klammer:
$= (12-30):6$
Nun lösen wir die äußere Klammer auf:
$=(-18):6$
Zuletzt eine Division:
$=-3$
-
Gib an, ob und wenn ja, welche Regel zur Termumformung hier verletzt wurde.
TippsZuerst Divisionen, dann Subtraktionen:
$4-2:2=4-1=3$
aber $4-2:2\neq2:2=1$.
Du liest von links nach rechts, genauso gehst du in der Mathematik vor.
LösungBeim Rechnen mit Termen musst du Folgendes beachten:
Für alle Schritte gilt:
- Punktrechnung vor Strichrechnung
- Von links nach rechts
- Innere Klammer zuerst!
- Nächstäußere Klammer!
- Term ohne Klammern!
- $3\cdot (4+5\cdot 2)\neq 3\cdot (9 \cdot 2)$
$3\cdot (4+5\cdot 2)= 3\cdot (4+10)= 3\cdot 14= 42$
- $3\cdot (5\cdot 2+4)\neq15\cdot (2+4)$
$3\cdot (5\cdot 2+4)=3\cdot (10+4)=3\cdot 14=42$
- $12:3\cdot 0\neq 12:0$
$12:3\cdot 0=4\cdot 0= 0$
- $12\cdot5:(4+3)=12\cdot5:7$
$12\cdot5:(4+2)=12\cdot5:6=60:6=10$
-
Zeige auf, welche mathematischen Ausdrücke Terme sind.
TippsZahlen und Variablen dürfen sogar alleine stehen und gelten als Term.
Rechenzeichen müssen zwischen Variablen und/oder Zahlen stehen, alleine bilden sie keinen Term. Außerdem dürfen niemals zwei Rechenzeichen direkt hintereinanderstehen.
Klammern dürfen in einem Term vorkommen, müssen aber immer ein Paar sein.
LösungTerme sind Rechenausdrücke, die Folgendes beinhalten dürfen:
- Zahlen und Variablen, die sogar alleine stehen dürfen und als Term gelten.
- Rechenzeichen wie $+$, $-$, $\cdot$ und $:$, die aber zwischen Variablen und/oder Zahlen stehen müssen, alleine bilden sie keinen Term. Außerdem dürfen niemals zwei Rechenzeichen direkt hintereinander stehen.
- Klammern, die immer als Paar vorkommen müssen.
- $2x$
- $x+1$
- $390$
- $2\cdot(a+b)$
- $x=2$ und $1<4$
- $1~-:4$
- $+$
-
Vereinfache die Terme vollständig.
TippsHier siehst du eine korrekte Umformung:
$((2\cdot1)+3)\cdot 4=(2+3)\cdot4=5\cdot4=20$
Terme sind Rechenausdrücke, die Folgendes beinhalten dürfen:
- Zahlen und Variablen, die sogar alleine stehen dürfen und als Term gelten.
- Rechenzeichen wie $+$, $-$, $\cdot$ und $:$, die aber zwischen Variablen und/oder Zahlen stehen müssen, alleine bilden sie keinen Term. Außerdem dürfen niemals zwei Rechenzeichen direkt hintereinander stehen.
- Klammern, die immer als Paar vorkommen müssen.
LösungBeim Rechnen mit Termen musst du Folgendes beachten:
- Punktrechnung vor Strichrechnung
- Von links nach rechts
- Klammern zuerst
- Klammern von innen nach außen lösen
- $(5+3\cdot(8+9))\cdot0=(5+3\cdot17)\cdot0=(5+51)\cdot0=56\cdot0=0$
- $17-4\cdot5+18:6=17-20+3=0$
- $12:4\cdot (1-4+3)=12:4\cdot 0= 3\cdot 0=0$
- $3$
- $2\cdot(4+5):6+0=2\cdot9:6+0=18:6+0=3+0=3$
- $((3\cdot5)-10)\cdot 4:2=(15-10)\cdot4:2=5\cdot4:2=20:2=10$
- $(3\cdot5-10)\cdot 4:2=(15-10)\cdot4:2=5\cdot4:2=20:2=10$
- $5+:3\cdot(8+9)$ Zwei Rechenzeichen dürfen nicht direkt hintereinander stehen.
- $7+3\cdot 0>1$ Terme dürfen keine Relationszeichen enthalten.
- $34\cdot (3+6\cdot(1+1)$ Klammern müssen immer als Paar vorkommen.
9.369
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.218
Lernvideos
38.687
Übungen
33.496
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Flächeninhalt – Übungen
- Volumen Zylinder
- Potenzgesetze – Übungen
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Brüche umwandeln Übungen
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Quadratische Gleichungen – Übungen
- Flächeninhalt