30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Null als Exponent 05:51 min

Textversion des Videos

Transkript Null als Exponent

Vaughn, ein griechischer Gelehrter in Ausbildung, befindet sich mitten in seinem täglichen Unterricht. Er weiß schon fast alles über Potenzen, möchte aber noch wissen, was geschieht, wenn man eine Zahl hoch 0 nimmt. Sein Lehrmeister hat ihm erzählt, dass jede Zahl, die nicht 0 ist, und die man hoch 0 rechnet, 1 ergibt. Aber Vaughn ist Wissenschaftler, ein Mann der Logik. Ohne Beweis akzeptiert er eine solche Aussage nicht. Mit ein wenig Logik, ein paar Zahlenmustern und der Hilfe von Potenzgesetzen finden wir mit Vaughn sicher eine Antwort auf die Frage "was ist x hoch 0". Schauen wir uns erst einmal die Potenzen von 2 an. 2 hoch 1 ist 2. 2 hoch 2 ist 4. 2 hoch 3 ist 8. Und 2 hoch 4 ist 16. Erkennst du da in der unteren Zeile unserer Tabelle ein Muster? Während unsere Exponenten von links nach rechts anwachsen, erhöht sich der Wert jeweils um den Faktor 2. Das ergibt Sinn, denn 2 ist die Basis und der Exponent zeigt uns an, wie oft diese Basis mit sich selbst multipliziert wird. Was aber, wenn wir uns von rechts nach links bewegen? Schau, wir gehen jetzt in die entgegengesetzte Richtung der Multiplikation. Deswegen teilen wir jedes Mal durch 2. Setzen wir also unsere Zahlenfolge nach links fort. 2 geteilt durch 2 ist 1. 1 geteilt durch 2 ist 1/2. 1/2 geteilt durch 2 ist 1/4. Jetzt fügen wir noch die Potenzschreibweise hinzu, wobei sich der Exponent mit jedem Schritt nach links um 1 verringert. So erhalten wir 2 hoch 0 2 hoch -1 und 2 hoch -2. Beide Zahlenfolgen zeigen, dass 2 hoch Null Eins ergibt. Soweit scheint der Lehrmeister also recht zu haben. Das eben war allerdings vielleicht nur ein Einzelfall. Wir können aber auch Potenzgesetze für unsere Beweisführung nutzen. Du erinnerst dich vielleicht, dass das Gesetz der Division von Potenzen folgendes besagt: Wenn man zwei Potenzen mit identischer Basis dividiert, muss man die Exponenten subtrahieren. 5 hoch 7' geteilt durch '5 hoch 3' ist zum Beispiel 5 hoch '7 minus 3', also 5 hoch 4. Was ist aber mit folgendem Ausdruck: '5 hoch 3' geteilt durch '5 hoch 3'. Nun, wir wissen ja, dass eine Zahl geteilt durch sich selbst stets 1 ergibt. Und wenn wir das Gesetz für die Division von Potenzen anwenden, können wir 3 minus 3 rechnen und erhalten 5 hoch 0. 5 hoch 0 ergibt also 1. Nutzen wir also die Variable x, um jede Basis ungleich 0 zu repräsentieren und damit das Gesetz der Null als Exponent zu formulieren. Die Variable m steht dann für jeden beliebigen Exponenten. Wie schon gesagt, ergibt jede Zahl geteilt durch sich selbst 1. Wir wenden das Gesetz der Division von Potenzen mit gleicher Basis an, kürzen und sehen, dass jede Zahl ungleich 0 hoch 0 gleich 1 ergibt. Der Lehrmeister hat also Recht und dank unseres Beweises können ihm jetzt auch glauben! Was wir jetzt über Potenzen mit dem Exponenten 0 wissen können wir auf allerlei Ausdrücke anwenden – auch auf solche, für die wir andere Potenzgesetze brauchen. Schauen wir uns folgenden Ausdruck an: y hoch 6, in Klammern, hoch 0. Welches Potenzgesetz erkennst du hier? Laut dem Gesetz für Potenzen von Potenzen können wir die Exponenten multiplizieren. So erhalten wir y hoch 0 gleich 1. Das Gesetz für Potenzen mit dem Exponenten 0 wurde also einmal mehr bestätigt. Jede Zahl ungleich 0 hoch 0 ergibt 1. Okay, was ist aber mit 5x hoch 2 mal y hoch 3, in Klammern, hoch 0? Wir können das mit dem Gesetz der Multiplikation von Potenzen erweitern. Dann multiplizieren wir die Exponenten und wenden das Gesetz für Potenzen von Potenzen an. Wir vereinfachen und sehen, dass am Ende jeder Term aufgrund des Gesetzes für Potenzen mit dem Exponenten Null Eins ergibt. Und damit erhalten wir auch als Endergebnis 1. Wir hätten diese langen Rechnungen aber gar nicht durchführen müssen – denn jede Zahl hoch 0 muss immer 1 ergeben, auch die komplizierten Ausdrücke in den Klammern. Wenn du erkennst, dass sich das Gesetz für Potenzen mit dem Exponenten 0 anwenden lässt, kannst du schneller mit Potenzen rechnen. Fassen wir noch mal zusammen, was wir gelernt haben: Was ist denn nun x hoch 0? Jede Zahl ungleich 0 hoch 0 ergibt 1. Dieses Gesetz trifft zu, ganz egal, welches andere Potenzgesetz noch im Spiel ist. Sei es das Gesetz für Potenzen von Potenzen das für die Multiplikation von Potenzen oder das für die Division von Potenzen. Vaughn hat mit logischen Überlegungen und mit unserer Hilfe das Gesetz für Potenzen mit dem Exponenten 0 bewiesen. Er setzt seine Studien fort und wird schließlich zu einem herausragenden Gelehrten, weil er die Dinge stets hinterfragt und sie mit Logik und Vernunft angeht. Die Leute kommen von nah und fern, um seinen Vorträgen zu lauschen. Er wird sicherlich als einer der Großen in die Geschichte eingehen.

Null als Exponent Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Null als Exponent kannst du es wiederholen und üben.

  • Gib an, wie du mit der Potenz von $2$ zeigen kannst, dass $2^0=1$ gilt.

    Tipps

    Zuerst sollte die bekannte $2$er-Potenzreihe mit positiven Exponenten aufgeschrieben werden.

    Betrachte die einzelnen Zusammenhänge zwischen den Werten der $2$er-Potenzreihe sowohl von links nach rechts als auch von rechts nach links. Das Ergebnis kann dann einfach abgelesen werden.

    Lösung

    Die folgende Beweisführung ist korrekt:

    • Zu Beginn schreiben wir die bekannten $2$er-Potenzen, also $2^{1}$ , $2^{2}$ und $2^{3}$ in eine Tabelle mit ihren jeweiligen Ergebnissen $2$, $4$ und $8$.
    Im Bild füllen wir also die rechte Seite der Tabelle der $2$er-Potenzen aus.

    • Wenn wir uns jetzt die Potenzwerte von $2^{1} , 2^{2}, 2^{3}$ anschauen, erkennen wir, dass das Ergebnis in jedem Schritt nach rechts mit $2$ multipliziert wird. Betrachten wir die Potenzwerte in der Tabelle nun von rechts nach links, so werden die Ergebnisse immer durch $2$ geteilt.
    Im Bild sehen wir, dass sich die Werte der $2$er-Potenz bei einem Schritt nach rechts, das heißt, wenn wir den Exponenten um $1$ erhöhen, verdoppeln. Verringern wir den Exponenten um $1$, gehen also nach links, halbieren sich die Potenzwerte.

    • Nach diesem Muster können wir die Ergebnisse für $2^{0}$ , $2^{-1}$ und $2^{-2}$ bestimmen, indem wir nämlich einfach durch $2$ teilen.
    • Wir erhalten also $2^{0}=1$, $2^{-1}=\frac{1}{2}$, $2^{-2}=\frac{1}{4}$ und vervollständigen unsere Tabelle.
    Nun wird der linke Teil der Tabelle nach dem bekannten Muster (durch $2$ teilen) weiter ausgefüllt.

    • Schlussendlich können wir aus der Tabelle ablesen, dass $2^{0}=1$ ergibt, was wir zeigen wollten.
    Aus der Tabelle ist nun einfach unser gesuchtes Ergebnis für $2^{0}$ abzulesen, also $2^{0}=1$.

  • Benenne die richtigen Aussagen über das Gesetz für Potenzen mit dem Exponenten $0$.

    Tipps

    Sobald der Exponent $0$ ist, ist es egal, was in der Basis $x$ steht, solange $x\neq0$.

    $(4+5)^0$ ergibt $1$, da auch hier das Gesetz für Potenzen mit Exponent $0$ gilt.

    Das Gesetz für Potenzen mit Exponent $0$ ist unabhängig von anderen Potenzgesetzen.

    Lösung

    Diese Aufgaben sind richtig:

    • „Egal welche Basis $x$ mit $x\neq0$ eine Potenz $x^n$ hat, es gilt immer: Wenn der Exponent $n$ gleich $0$ ist, so ist das Ergebnis immer $1$.“
    • „Jede Zahl (außer die $0$) hoch $0$ ergibt immer $1$.“
    Diese Aufgaben sind falsch:
    • „Das Gesetz gilt nur bei Zweierpotenzen also nur bei $2^{0}$.“ Die Basis $x$ kann (außer $x\neq0$) beliebig sein, das Ergebnis ist immer $1$, wenn der Exponent $0$ ist.
    • „Gibt es noch andere Potenzgesetze, die im Term gelten, so gilt das Gesetz für Potenzen mit Exponent $0$ nicht.“ Das Gesetz gilt, völlig unabhängig von anderen Gesetzen, immer.
    • „$(2+3)^0$ ergibt $5$.“ Das Ergebnis ist $1$, denn jede Zahl $x$ mit $x\neq0$ hoch $0$ ergibt immer $1$.

  • Ermittle die Ergebnisse der Terme mithilfe aller dir bekannten Potenzgesetze.

    Tipps

    Überprüfe zunächst, ob du zur Vereinfachung bestimmte Potenzen wie $1^{78}=1$ direkt ausrechnen kannst.

    Wende bekannte Potenzgesetze an und vereinfache soweit wie möglich:

    • Division von Potenzen: $\frac{x^{n}}{x^{m}}$ $ = x^{n-m}$
    • Multiplikation von Potenzen: $(x \cdot y)^m=x^m \cdot y^m$
    • Potenzen von Potenzen: $(x^m)^n = x^{m \cdot n}$
    • Potenzen mit dem Exponenten gleich $0$: $x^0=1$ für $x \neq 0$
    Lösung

    Für die Berechnungen der Ausdrücke auf der linken Seite wenden wir die folgenden Potenzgesetze an:

    Division von Potenzen: $\frac{x^{n}}{x^{m}}$ $ = x^{n-m}$

    Multiplikation von Potenzen: $(x \cdot y)^m=x^m \cdot y^m$

    Potenzen von Potenzen: $(x^m)^n = x^{m \cdot n}$

    Potenzen mit dem Exponenten gleich $0$: $x^0=1$ für $x \neq 0$

    • Für den ersten Ausdruck gilt mit dem Gesetz für Potenzen mit dem Exponenten gleich $0$:
    $5^3 \cdot 5^0+1^0 = 5^3 \cdot 1 +1 = 5^3 + 1 = 125 + 1 =\mathbf{126}$

    • Im zweiten Fall nutzen wir das Gesetz für Potenzen mit dem Exponenten gleich $0$ für den ersten Summanden und das Gesetz zur Multiplikation von Potenzen für den zweiten:
    $7^{2-2}+(2\cdot 3)^{2+1} + 3^3= 7^0+(2\cdot 3)^3+3^3 = 1+2^3\cdot 3^3+3^3=1+8\cdot 27+27=\mathbf{ 244}$

    • Beim dritten Ausdruck hilft uns das Gesetz der Division von Potenzen:
    $\frac{3^5}{3^3} \cdot \frac {5^{-2}}{5^{-4}}= 3^{5-3} \cdot 5^{-2-(-4)}=3^2 \cdot 5^2= 9 \cdot 25 = \mathbf{225}$

    • Beim letzten Ausdruck berechnen wir beim Minuend zunächst die einfachen Potenzen $1^3=1$ und $3^2=9$. Beim Subtrahend werden zunächst die Gesetze zur Multiplikation von Potenzen und zu Potenzen von Potenzen genutzt und dann das Gesetz für Potenzen mit dem Exponent gleich $0$. (Wenn du es siehst, kannst du natürlich auch gleich das Gesetz für Potenzen mit dem Exponent gleich $0$ anwenden.)
    $(1^3+3^2)^2-(1^3 \cdot 3^4)^0= (1+9)^2-((1^3)^0 \cdot (3^4)^0)=10^2-1^{3\cdot 0} \cdot 3^{4\cdot 0} = 100 -1^0 \cdot 3^0 =100 -1 = \mathbf{99}$

  • Vervollständige den Beweis für $x^0=1$ mit $x\neq 0$.

    Tipps

    Ausgangspunkt ist das Divisions-Potenzgesetz: $\frac{y^{l}}{y^{p}} = y^{l-p}$

    Ein Beispiel mit gleichen Exponenten: $\dfrac{6^{4}}{6^{4}} = 6^{4-4} = 6^{0} = 1$

    Lösung

    Folgende Beweisführung ist korrekt:

    Als Ausgangspunkt dient das Divisions-Potenzgesetz, das $\frac{y^{l}}{y^{p}}$ $ = y^{l-p}$ lautet. In unserer bekannten Schreibweise gilt also:

    • $\frac{x^{m}}{x^{n}}= x^{m-n}$
    Wir verdeutlichen uns dies mit einem kurzen Zahlenbeispiel:

    • Kurzes Beispiel: $\frac{5^{7}}{5^{3}} = 5^{7-3} = 5^{4}$
    Die Zahlen können hierbei beliebig gewählt werden. Einzig die Basis muss bei der Division gleich sein. Wählen wir nun die Exponenten ebenfalls gleich, wissen wir, dass $\frac{5^{3}}{5^{3}}=\frac{125}{125}=1$, da eine Zahl dividiert durch sich selbst immer gleich $1$ ist.

    • $\frac{5^{3}}{5^{3}} = 5^{3-3} = 5^{0} = 1$
    Zum Schluss wird das Beispiel noch mit Variablen verallgemeinert:
    • Für $x\neq0$ gilt: $\frac{x^{m}}{x^{m}} = x^{m-m} = x^{0} = 1$
    Das wollten wir beweisen.

  • Bestimme die Terme, bei denen das Gesetz für Potenzen mit dem Exponenten $0$ gilt.

    Tipps

    Wende zuerst mögliche Potenzgesetze an und überprüfe ob der Exponent $0$ wird.

    Sollte der Exponent $0$ sein, kannst du das Gesetz auch anwenden.

    Lösung

    Bei folgenden Termen kannst du das Gesetz anwenden:

    • $\frac{2^{3}}{2^{3}}$, denn es gilt $2^{3-3}=2^{0}=1$
    • ${(3\cdot x^{4}\cdot y^{3})}^{0}$, denn der Exponent $0$ erlaubt es hierbei.
    • $125^{0}$, auch hier ist der Exponent schon $0$.
    • $\frac{5^{-4}}{5^{-4}}$, auch wenn die Exponenten wir negativ sind, gilt $-4-(-4)=0$. Da auch die Basen identisch sind, können wir unser Potenzgesetz anwenden.
    Folgende Terme dürfen das Gesetz nicht verwenden:
    • $\frac{3^{2}}{5^{2}}$, denn die Basis ist nicht gleich und das Potenzgesetz der Division darf nicht angewendet werden.
    • $(-1+1)^{3}$, denn der Exponent ist hier $3$ auch wenn die Basis $0$ wird.
    • $\frac{2^{3}}{2^{2}}$, da hier die Basis zwar gleich ist, aber für die Exponenten $3-2=1\neq0$ gilt.

  • Leite das Ergebnis der folgenden Terme her.

    Tipps

    Überprüfe zuerst, ob du das Gesetz für Potenzen mit dem Exponenten $0$ anwenden kannst. Falls ja, ist das Ergebnis $1$.

    Wende bekannte Potenzgesetze an und vereinfache soweit wie möglich:

    • Division von Potenzen: $\frac{x^{n}}{x^{m}}$ $ = x^{n-m}$
    • Multiplikation von Potenzen: Als Beispiel $(23 \cdot 2)^4=23^4 \cdot 2^4$
    • Potenzen von Potenzen: Als Beispiel $(23^2)^4 = 23^{2 \cdot 4} = 2^12= 4096$
    Nun überprüfe ob du das Gesetz für Potenzen mit dem Exponenten $0$ anwenden kannst.

    Lösung

    Folgende Rechenschritte können vollzogen werden:

    • $(y^{3}\cdot x^{2})^{0} = (y^3)^0 \cdot (x^2)^0 = y^{3\cdot 0} \cdot x^{2 \cdot 0} = y^{0} \cdot x^{0} =1\cdot 1 = 1$
    Angewandt wurde im ersten Schritt das Gesetz zur Multiplikation von Potenzen, also:

    $(x \cdot y)^m=x^m \cdot y^m$.

    Danach wird zur Vereinfachung das Gesetz zu Potenzen von Potenzen:

    $(x^m)^n = x^{m \cdot n}$

    genutzt, so dass dann das Gesetz für Potenzen mit dem Exponenten $0$ verwendet werden kann.

    • $\frac{2^{3}}{2^{2}}=2^{3-2}=2^{1}=2$
    Hier kann das Gesetz für die Division von Potenzen:

    $\frac{x^{n}}{x^{m}}$ $ = x^{n-m}$

    angewandt werden.

    • $99^{0}=1$
    Das Gesetz für Potenzen mit dem Exponenten $0$ gilt hierbei.
    • $(1^{99}\cdot 2^{2})^{1}= (1 \cdot 4)^1 = 1^1 \cdot 4^1= 1 \cdot 4 = 4$
    Hier können die Potenzen $1^{99}$ und $2^{2}$ leicht berechnet werden.
    • $(m^{0})^{99}= 1$
    Das Gesetz für Potenzen mit dem Exponenten $0$ kann angewendet werden.