Natürliche Zahlen – Einführung
Natürliche Zahlen beginnen mit $0$ oder $1$ und werden durch Addition von $1$ erzeugt. Sie sind positiv und ganzzahlig. Mit dem Symbol $\mathbb{N}$ werden sie dargestellt. Entdecke die Welt der natürlichen Zahlen und ihre Beziehung zu ganzen, rationalen und reellen Zahlen. Interessiert? Dies und vieles mehr findest du im folgenden Text!
- Natürliche Zahlen – Definition
- Natürliche Zahlen – Symbol
- Natürliche und ganze Zahlen
- Natürliche und rationale Zahlen
- Natürliche und reelle Zahlen

in nur 12 Minuten? Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
-
5 Minuten verstehen
Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.
92%der Schüler*innen hilft sofatutor beim selbstständigen Lernen. -
5 Minuten üben
Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.
93%der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert. -
2 Minuten Fragen stellen
Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.
94%der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Natürliche Zahlen – Einführung Übung
-
Ergänze die Eigenschaften natürlicher Zahlen.
TippsDie natürlichen Zahlen benutzt du, wenn du herausfinden möchtest, wie viele Murmeln in einem Murmelsäckchen sind.
Den Nachfolger einer natürlichen Zahl findest du durch Weiterzählen.
Das Weiterzählen geht nie zu Ende.
LösungZum Zählen verwendest du die natürlichen Zahlen. Sie beginnen mit $0$ oder $1$, genau wie du beim Zählen mit $0$ oder mit $1$ anfängst. Jede weitere natürliche Zahl findest du durch Weiterzählen um $+1$.
Die Menge aller dieser Zahlen bezeichnen wir mit dem Buchstaben $\mathbb N$. Jede natürliche Zahl ist ein Element von $\mathbb N$. Die $0$ kann man als natürliche Zahl ansehen oder auch nicht. Darüber musst du dich mit deinen Lehrern einigen.
Natürliche Zahlen verwendest du wie gesagt zum Zählen. Der Vorgänger einer natürlichen Zahl ist um $1$ kleiner, der Nachfolger um $1$ größer.
Zu jeder natürlichen Zahl kannst du den Nachfolger finden, indem du um $1$ weiterzählst, d.h. indem du $+1$ rechnest. Da du immer weiterzählen kannst und nie an ein Ende gelangst, gibt es unendlich viele natürliche Zahlen.
-
Benenne Eigenschaften natürlicher Zahlen.
TippsDurch Weiterzählen findest du zu jeder natürlichen Zahl noch eine größere.
Überlege, ob du beim Rückwärtszählen auch immer neue natürliche Zahlen findest.
Ganze Zahlen sind $0$, $+1$, $-1$, $+2$, $-2$, $+3$, $-3$ $\ldots$
LösungFolgende Aussagen sind wahr:
- „Zu jeder natürlichen Zahl gibt es einen Nachfolger.“ Den Nachfolger findest du, indem du $+1$ rechnest.
- „Die Menge der natürlichen Zahlen hat unendlich viele Elemente.“ Da du immer weiterzählen kannst, gibt es unendlich viele natürliche Zahlen.
- „Es gibt keine größte, aber eine kleinste natürliche Zahl.“ Du kannst immer weiterzählen, daher gibt es keine größte natürliche Zahl. Das Zählen beginnt aber bei $0$ oder $1$, daher gibt es eine kleinste natürliche Zahl.
- „Das Symbol $\mathbb N$ bezeichnet die größte natürliche Zahl.“ Dieses Symbol bezeichnet die Menge der natürlichen Zahlen. Eine größte natürliche Zahl gibt es nicht.
- „Den Vorgänger einer natürlichen Zahl findest du, indem du $+1$ rechnest.“ Um den Vorgänger zu finden, musst du rückwärts zählen, also $-1$ rechnen.
- „Die größte natürliche Zahl ist $123.456.789.000.000$.“ Es gibt keine größte natürliche Zahl. Der Nachfolger der Zahl $123.456.789.000.000$ ist $123.456.789.000.001$ und ist größer.
-
Bestimme Vorgänger und Nachfolger.
TippsZwei Zahlen sind benachbart, wenn sie sich um $+1$ oder um $-1$ unterscheiden.
Achte beim Rückwärtszählen auf den Zehner-Übertrag.
Der Vorgänger von $4.321$ ist $4.320$.
LösungDen Nachfolger zu einer natürlichen Zahl findest du, indem du $+1$ rechnest, den Vorgänger durch $-1$. Hier ergeben sich diese Zuordnungen:
- Die Zahl $56.789$ hat den Vorgänger $56.788$ und den Nachfolger $56.790$.
- Die Zahl $56.798$ hat als Vorgänger die Zahl $56.797$ und als Nachfolger $56.799$.
- Der Vorgänger von $56.777$ ist die Zahl $56.776$, der Nachfolger ist $56.778$.
- Für die Zahl $56.799$ ist der Nachfolger $56.800$, der Vorgänger ist die Zahl $56.798$.
-
Vergleiche die Zahlen.
TippsBeachte, dass du den Vorgänger oder Nachfolger finden musst.
Rechnest du zu einer natürlichen Zahl $1$ dazu, so findest du den Nachfolger.
Der Nachfolger von $71.999$ ist $72.000$.
LösungDen Nachfolger einer natürlichen Zahl findest du, indem du $+1$ rechnest. Den Vorgänger erhältst du, indem du $-1$ rechnest. Zwei Zahlen sind benachbart, wenn sie sich um $1$ unterscheiden. Da hier manche Zahlen mehrmals vorkommen, musst du genau aufpassen, die richtigen Paare benachbarter Zahlen zu finden. Du kannst z.B. mit den oberen Zahlen beginnen, jeweils $+1$ und $-1$ rechnen und nachschauen, welches der beiden Ergebnisse bei den unteren Zahlen vorkommt.
Am Ende findest du folgende Zuordnung:
- $987.654.321$ ist der Nachfolger von $987.654.320$.
- $987.654.322$ ist der Nachfolger von $987.654.321$.
- $98.765.432$ ist der Vorgänger von $98.765.433$.
- $9.876.541$ ist der Nachfolger von $9.876.540$.
- $9.876.540$ ist der Nachfolger von $9.876.539$.
-
Gib die Eigenschaften natürlicher Zahlen wieder.
TippsBevor Edwin $16$ Jahre alt wurde, war er ein Jahr jünger.
Stelle dir vor, du zählst beim Treppensteigen die Stufen. Überlege, was du von einer Stufe zur nächsten rechnen musst.
Der Nachfolger von $599$ ist $600$.
LösungDie Treppenstufen zählst du vorwärts: Nach der Stufe Nr. $528$ kommt die Stufe Nr. $529$. Die Tage bis zu deinem Geburtstag zählst du rückwärts: Gestern waren es noch $34$ Tage, heute sind es nur noch $33$ und morgen hast du bereits in $32$ Tagen Geburtstag. Durch Vorwärtszählen oder das Rechnen von $+1$ findest du jeweils den Nachfolger einer natürlichen Zahl, durch Rückwärtszählen oder das Rechnen von $-1$ den Vorgänger.
Edwin ist jetzt $16$ Jahre alt. Vor einem Jahr war er ein Jahr jünger, also $15$. In einem Jahr wird er $17$ Jahre alt sein. Edwin zählt die Stufen der Treppe der Weisheit, er beginnt mit $1$. Für jede weitere Stufe zählt er um $1$ weiter, d.h. er rechnet $+1$.
Nach einiger Zeit hat Edwin schon die Stufe $1.178.047$ erreicht. Die vorige Stufe hatte die um $1$ kleinere Zahl, also $1.178.046$. Die Zahl der nächsten Stufe ist um $1$ größer als die der jetzigen Stufe, also $1.178.048$. Den Vorgänger einer natürlichen Zahl findest du, indem du rückwärts zählst oder $-1$ rechnest. Für den Nachfolger musst du um $1$ weiterzählen oder $+1$ rechnen.
Edwin hat inzwischen schon sehr viele Stufen der Weisheit erklommen, nämlich $2.102.400.300$. Für die nächste Stufe rechnet er $+1$ und kommt auf $2.102.400.301$. Für die vorige Stufe rechnet er $-1$, beachtet dabei den Zehner- und den Hunderter-Übergang und kommt auf $2.102.400.299$.
-
Analysiere die Aussagen.
TippsDie Menge der natürlichen Zahlen verhält sich zu jeder einzelnen natürlichen Zahl wie die Verpackung zum Inhalt. Die Zahlen, mit denen Du rechnest, sind der Inhalt.
Überlege, ob Du beim Vorwärts- und Rückwärtszählen in den natürlichen Zahlen an ein Ende kommst.
LösungFolgende Aussagen sind falsch:
- „Es gibt nicht unendlich viele natürliche Zahlen.“ Die natürlichen Zahlen findest du durch Weiterzählen, ausgehend von $1$ oder $0$. Da du immer weiterzählen kannst, kommst du nie an ein Ende. Daher gibt es unendlich viele natürliche Zahlen.
- „Es gilt $\mathbb N = \{0; 2; 4; 6; 8; \ldots\}$.“ Die gegebene Menge enthält nicht alle natürlichen, sondern nur die geraden natürlichen Zahlen. Da es auch ungerade natürliche Zahlen gibt, ist die Aussage falsch.
- „$1$ ist die einzige Zahl aus $\mathbb N_0$, zu der es keinen Vorgänger in $\mathbb N_0$ gibt.“ Die Menge $\mathbb N_0$ enthält auch die Zahl $0$, diese ist der Vorgänger von $1$. Für die $0$ wäre die Aussage richtig: $0$ ist die einzige Zahl aus $\mathbb N_0$, zu der es keinen Vorgänger in $\mathbb N_0$ gibt.
- „Es gibt eine kleinste, aber keine größte natürliche Zahl.“ Die kleinste natürliche Zahl ist je nach Konvention $0$ oder $1$, aber eine größte natürliche Zahl gibt es nicht.
- „Die Menge der $\mathbb N_0$ enthält alle positiven geraden und ungeraden Zahlen und die $0$ und enthält keine weiteren Zahlen.“ Jede positive ganze Zahl ist eine natürliche Zahl. Nehmen wir zu diesen Zahlen noch die $0$ hinzu, sind keine weiteren Zahlen in $\mathbb N_0$ enthalten.
- „Die Menge der natürlichen Zahlen ist selbst keine natürliche Zahl.“ Die Menge der natürlichen Zahlen ist keine natürliche Zahl, so wie die Chipstüte selbst kein Chip ist. Mit der Menge der natürlichen Zahlen kannst du nicht in derselben Weise rechnen oder zählen wie mit den Zahlen selbst. Analog isst du auch nicht die Verpackung der Chips, sondern nur ihren Inhalt.
9.226
sofaheld-Level
6.600
vorgefertigte
Vokabeln
8.129
Lernvideos
38.597
Übungen
33.424
Arbeitsblätter
24h
Hilfe von Lehrkräften

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.
Testphase jederzeit online beenden
Beliebteste Themen in Mathematik
- Römische Zahlen
- Prozentrechnung
- Prozentrechnung - Übungen
- Primzahlen
- Geometrische Lagebezeichnungen
- Was ist eine Ecke?
- Rechteck
- Was ist eine Gleichung?
- Pq-Formel
- Binomische Formeln
- Trapez
- Volumen Zylinder
- Umfang Kreis
- Zehnerzahlen vergleichen und ordnen – Übungen
- Quadrat
- Zahlen sortieren – Übungen
- Division
- Binomische Formeln – Übungen
- Raute
- Parallelogramm
- Ungleichungen – Übungen
- Polynomdivision
- Zahlen bis 1000 ordnen – Übungen
- Was Ist Eine Viertelstunde
- Terme mit Variablen aufstellen – Übungen
- Prisma
- Die Grundrechenarten – Übungen
- Mitternachtsformel
- Äquivalenzumformung
- Grundrechenarten Begriffe
- Größer Kleiner Zeichen
- Dreiecksarten
- Punkt-vor-Strich und Klammern-zuerst-Regel
- Aufbau von Dreiecken
- Quader
- Zahlen runden – Übungen
- Satz Des Pythagoras
- Ziffern und Stellenwerte – Übungen
- Dreieck Grundschule
- Koordinatensystem – Übungen
- Erste Binomische Formel
- Kreis
- Trigonometrie
- Trigonometrische Funktionen
- Standardabweichung
- Flächeninhalt
- Termumformungen – Übungen
- Volumen Kugel
- Winkelsummen in Dreiecken und Vierecken – Übungen
- Zahlen In Worten Schreiben