30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Zahlen auf dem Zahlenstrahl 07:02 min

Textversion des Videos

Transkript Zahlen auf dem Zahlenstrahl

Ach - hätte Dr. Evil doch damals nur immer seine Hausaufgaben gemacht, dann wäre er jetzt kein gemeiner Superschurke ohne Freunde! Moment mal! Ein Abstecher durch die Zeit zu seinem jüngeren Ich dürfte dieses Problem doch wohl lösen! Beim Einstellen der Zeitmaschine, werden wir die natürlichen Zahlen auf dem Zahlenstrahl anordnen. Die natürlichen Zahlen sind die Zahlen zum Zählen und ihr Symbol ist dieses besondere N. Für manche gehört die Null zu den natürlichen Zahlen dazu, für andere aber nicht. Wir können die natürlichen Zahlen ihrer Größe nach ordnen. Der Vorgänger ist immer 'um eins kleiner' und der Nachfolger 'um eins größer'. Neben diesen Darstellungen in der Mengenschreibweise gibt es noch eine bildlichere Darstellung. Nämlich ihre Anordnung auf dem Zahlenstrahl. Ganz links ist der Anfang - die Null. Nach rechts gehend wollen wir immer größere Zahlen eintragen. Lass uns nun pro Zentimeter einen einer-Schritt abtragen. So erhalten wir die Zahlen 2, 3, 4 und so weiter. Je weiter rechts eine Zahl steht, desto größer ist sie. Sehen wir uns einmal die 3 und die 5 an. Die 3 steht links, die 5 rechts 3 ist also kleiner als 5 - das notieren wir so. Du kannst auch herausfinden, um WIE VIEL sich die Zahlen genau voneinander unterscheiden. Von der 3 nach rechts zur 5 zählen wir dafür zwei Einer-Schritte. Also ist 5 um zwei größer als 3. Tja - und wo ist nun die 100? Lass uns einen neuen Zahlenstrahl zeichnen und diesmal pro Zentimeter einen Zehner-Schritt gehen. Dann befindet sich hier die 20, hier die 30 und hier die 100. Sehen wir uns als Beispiel die 50 und die 80 an. Welche Zahl ist größer? Die 80 steht weiter rechts auf dem Zahlenstrahl, somit ist sie die größere Zahl. Um herauszufinden, um wie viel größer die 80 ist starten wir bei 50 und gehen nach rechts zu 80. Wir zählen drei Zehner-Schritte. 80 ist also um dreißig größer als 50. Aber wo liegt beispielsweise die 13? 13 lässt sich in 10 und 3 zerlegen. Wir müssen also die Zehner-Schritte auf dem Zahlenstrahl in 10 kleine Einer-Schritte aufteilen! Wir zählen kurz durch, ob alles passt ja, denn 10 Einer-Schritte ergeben einen Zehner-Schritt! Zur 13 machen wir nun von der 0 aus einen Zehner-Schritt und drei Einer-Schritte nach rechts! Hier ist also die 13. Findest du auch noch heraus, welche Zahl hier markiert ist? Wir starten bei 40 und gehen nach rechts und zwar neun Einer-Schritte. Hier liegt also die 49! Wir könnten aber auch bei 50 starten und rückwärts einen Einer-Schritt gehen! Weißt du noch? Im Vergleich liegt die 49 rechts von der 13, also ist 49 die größere Zahl! Um von der 13 zur 49 zu gelangen, benötigen wir nach rechts 3 Zehner-Schritte und 6 Einer-Schritte. 49 ist also um 36 größer als 13. Alles, was du bisher gelernt hast, funktioniert auch bei noch größeren Zahlen. Schau mal: Dieser Zahlenstrahl geht von 0 bis tausend und das auf 10 Zentimetern. Wenn wir nun pro Zentimeter eine Markierung setzen, zerlegen wir die 1000 in 10 gleichgroße Abschnitte. Wie groß ist dann diesmal ein Schritt? - Genau: 100. Es handelt sich hier also um Hunderter-Schritte. Findest du heraus, wo die Zahl 50 liegt? Hm, 50 ist die Hälfte von 100, dann muss sie zwischen 0 und 100 genau in der Mitte liegen! Und die 640? Irgendwo zwischen 600 und 700, nahe bei der 650? Für die genaue Markierung zerlegen wir alle Hunderter auf dem Zahlenstrahl in 10 kleine Zehner. Ausgehend von der 600 gehen wir nun 4 kleine Zehner-Schritte nach rechts und da ist die 640! Und wo liegt die 479? So in etwa hier. Dafür brauchen wir jetzt Einer-Schritte. Wir müssen die Zehner auf dem Zahlenstrahl also nochmal zerlegen, aber dann erkennt man ja gar nichts mehr! Kein Wunder - wir haben hier pro Zentimeter Hunderter-Schritte gewählt, daher können wir die kleinen Einer-Schritte gar nicht mehr darstellen. Zurück zu Dr. Evil und seiner Zeitreise. Er befindet sich momentan im Jahr 2020. Für die Reise zu seinem 12-jährigen Ich muss er 53 Jahre zurückreisen. Wir bewegen uns also auf dem Zahlenstrahl nach links, wo die Jahreszahlen immer kleiner werden. Welche Jahreszahl soll er nun auf seiner Zeitmaschine einstellen? Die großen Markierungen entsprechen Schritten von zehn Jahren, dann sind die kleinen Striche Ein-Jahres-Schritte. 53 Jahre müssen fünf große Zehner-Schritte und zusätzlich drei kleine Einer-Schritte sein. Hm, 1970, 1967! Also los! Aha - nach Hausaufgaben sieht das eher nicht aus. Höh?! Oh nein, jetzt bleiben die ganzen Hausaufgaben an ihm hängen!

3 Kommentare
  1. Hallo Hellwigulrike,
    Bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können.
    Liebe Grüße aus der Redaktion

    Von Adina Schulz, vor etwa 2 Monaten
  2. schlech

    Von Hellwigulrike, vor etwa 2 Monaten
  3. das hat mir sehr grholfen dankeeeee

    Von Aschabus, vor 6 Monaten

Zahlen auf dem Zahlenstrahl Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zahlen auf dem Zahlenstrahl kannst du es wiederholen und üben.

  • Beschreibe die Zahlen auf dem Zahlenstrahl.

    Tipps

    Der Zahlenstrahl beginnt links und zeigt nach rechts.

    Der Abstand einer Zahl zur $0$ wird nach rechts immer größer.

    Das Vergleichszeichen ist wie der Schnabel eines hungrigen Kükens zum größeren Happen hin geöffnet.

    Lösung

    Der Zahlenstrahl dient zur Veranschaulichung der natürlichen Zahlen. Diese sind auf dem Zahlenstrahl der Größe nach angeordnet. Der Zahlenstrahl beginnt links mit der $0$. Die Zahlen werden nach rechts immer größer. Du kannst dann jede natürliche Zahl auf dem Zahlenstrahl eintragen.

    Um zu einer vorgegebenen Zahl die passende Stelle auf dem Zahlenstrahl zu finden, kannst Du Dich z.B. an den Zehnern orientieren: Die Zahl $49$ besteht aus vier Zehnern und neun Einern. Du trägst sie auf dem Zahlenstrahl ab, indem Du von der $40$ noch $9$ Einerschritte nach rechts gehst. Du kannst aber auch von der Zahl $50$ aus einen Einerschritt nach links gehen, um zur $49$ zu gelangen.

    Die Zahl $13$ ist kleiner als die Zahl $49$, deswegen steht sie auf dem Zahlenstrahl weiter links. In Zeichen schreibt man:

    $13 < 49$.

    Um von der $13$ zur $49$ zu gelangen, musst Du auf dem Zahlenstrahl $36$ Einerschritte nach rechts gehen, denn $49$ ist um $36$ größer als $13$.

  • Beschrifte den Zahlenstrahl.

    Tipps

    Überlege, wie viele Schritte es von $13$ bis $49$ sind.

    Die $13$ seht auf dem Zahlenstrahl zwischen der $10$ und der $20$.

    Teile den Weg auf dem Zahlenstrahl von der $13$ zur $49$ in Zehner- und Einerschritte auf und trage die passenden Anzahl an Zehnern und Einern über dem Zahlenstrahl ab.

    Lösung

    Auf dem Zahlenstrahl sind die Zahlen der Größe nach angeordnet. Der Zahlenstrahl beginnt ganz links mit der $0$. Jedem Schritt nach rechts entspricht das Weiterzählen um $+1$. Du kannst die Zahlen $13$ und $49$ auf dem Zahlenstrahl positionieren: die $13$ steht zwischen der $10$ und der $20$ – aber nicht genau in der Mitte, sondern drei Schritte rechts von $10$ oder $7$ Schritte links von $20$.

    Den Weg von $13$ zu $49$ kannst Du in Zehner- und Einerschritte unterteilen. Es sind dann drei Zehnerschritte und sechs Einerschritte. $49$ ist also um $36$ größer als $13$, denn Du brauchst $36$ Schritte von der $13$ bis zur $49$.

  • Analysiere die Aussagen.

    Tipps

    Zeichne für jede Situation einen (oder mehrere) Zahlenstrahl(en) und prüfe die Beschreibungen daran.

    Lösung

    Folgende Beschreibungen sind richtig:

    • Maries Zuordnung: Legst Du zwei Zahlenstrahlen nebeneinander und markierst den oberen in Zweierschritten, den unteren in Dreierschritten, so kannst Du jeder Zahl der $2$er-Reihe eindeutig eine Zahl der $3$er-Reihe zuordnen und umgekehrt. Der $10 =5 \cdot 2$ entspricht die $15=5 \cdot 3$, der $12 =6 \cdot 2$ entspricht die $18=6 \cdot 3$ usw.
    • Claras Trick: Legst Du zwei Zahlenstrahlen in umgekehrter Orientierung aneinander, so erhältst Du die Zahlengerade. Darauf kannst Du die ganzen Zahlen der Größe nach anordnen. Die $0$ ist die Schnittstelle der beiden Strahlen. Von dort nach rechts verlaufen die positiven ganzen Zahlen. Sie entsprechen den natürlichen Zahlen. Nach links verlaufen die negativen ganzen Zahlen.
    Folgende Beschreibungen sind falsch:

    • Dr. Evils Zeitmaschine: Stehen auf der Skala nur natürliche Zahlen zur Verfügung, so kann Dr. Evil aus dem Jahr $2020$ höchstens um $2020$ Jahre in die Vergangenheit reisen, also bis in das Jahr $0$. Um weiter in die Vergangenheit reisen zu können, müsste er die Skala der Zeitmaschine auf die Zahlengerade der ganzen Zahlen erweitern.
    • Max’ Vermutung: Es gibt genau $10$ einstellige Zahlen, nämlich die Zahlen von $0$ bis $9$. Die Anzahl der Stellen erhöht sich also nach $10$ Schritten bereits um $1$. Es gibt aber $90$ zweistellige Zahlen, nämlich die Zahlen von $10$ bis $99$. Die Erhöhung der Stellenzahl von $2$ auf $3$ Stellen geschieht also diesmal erst nach $90$ Schritten auf dem Zahlenstrahl. Für die nächste Erhöhung von $3$ auf $4$ Stellen musst Du sogar $900$ Schritte auf dem Zahlenstrahl weiter gehen, von $100$ bis $1000$. Die Stellenzahl wächst also nicht gleichmäßig, sondern immer langsamer, je größer die Zahlen werden.
  • Ergänze die Sätze über natürliche Zahlen auf dem Zahlenstrahl.

    Tipps

    Auf dem Zahlenstrahl werden die Zahlen nach rechts immer größer.

    Jede Zahl auf dem Zahlenstrahl (außer $0$) hat einen linken und einen rechten Nachbarn. Überlege, welcher Nachbar der kleinere ist.

    $10$ steht auf dem Zahlenstrahl weiter links als $100$.

    Lösung

    Die korrekten Sätze lauten:

    • „Jede natürliche Zahl steht auf dem Zahlenstrahl ... an genau einer Stelle.“ Keine natürliche Zahl fehlt auf dem Zahlenstrahl, und keine kommt zweimal vor.
    • „Die Zahl $13$ steht auf dem Zahlenstrahl ... weiter links als die Zahl $49$.“ Je weiter links eine Zahl steht, desto kleiner ist sie: $13$ ist kleiner als $49$.
    • „In $36$ Schritten nach rechts auf dem Zahlenstrahl ... gelangst Du von $13$ zu $49$.“ Jeder Schritt auf dem Zahlenstrahl nach rechts entspricht dem Weiterzählen um $+1$. Wenn Du zu $13$ noch $36$ dazu zählst, kommst Du zu $49$.
    • „Links neben der Zahl $50$ ... steht die Zahl $49$.“ Der linke Nachbar einer natürlichen Zahl ist die nächstkleinere natürliche Zahl. Du findest die Zahl, indem Du $-1$ rechnest.
    • „Die Zahl $80$ steht auf dem Zahlenstrahl ... weiter rechts als die Zahl $49$.“ Die Zahl $80$ ist größer als die Zahl $49$. Daher steht sie auf dem Zahlenstrahl weiter rechts.
  • Vergleiche die natürlichen Zahlen.

    Tipps

    Das Vergleichszeichen ist immer zur größeren Zahl hin geöffnet.

    $32$ ist größer als $21$, denn auf dem Zahlenstrahl steht $21$ weiter links als $32$.

    Du kannst $21 < 32$ oder auch $32 > 21$ schreiben.

    Lösung

    Das Vergleichszeichen zeigt an, welche von zwei natürlichen Zahlen die größere ist. Es ist wie der Schnabel eines hungrigen Vogelkükens immer zur größeren Zahl hin geöffnet. Die Größe einer natürlichen Zahl entspricht ihrem Abstand von $0$ auf dem Zahlenstrahl. Je weiter rechts eine Zahl steht, desto größer ist ihr Abstand zu $0$ (denn die steht ganz links) und desto größer ist die Zahl. Von zwei verschiedenen natürlichen Zahlen ist immer eine größer als die andere. Sie steht auf dem Zahlenstrahl weiter rechts. Mit diesen Überlegungen und einem Zahlenstrahl als Orientierungshilfe findest Du heraus:

    Folgende Ungleichungen sind richtig:

    • $415 > 389$. Die $415$ steht auf dem Zahlenstrahl rechts von $400$, die $389$ dagegen links von $400$.
    • $18 < 81$. Die Zahl $18$ steht viel weiter links als die Zahl $81$.
    • $313 > 131$. Die Zahl $131$ steht links von $200$, die Zahl $313$ steht rechts von $300$, daher ist $131$ kleiner als $313$.
    • $89 < 415$. Hier kannst Du schon an der Anzahl der Stellen erkennen, dass $89$ kleiner ist als $415$. Je mehr Stellen eine Zahl hat, desto weiter rechts steht sie auf dem Zahlenstrahl.
    Folgende Ungleichungen sind falsch:

    • $87 < 79$. Die Zahl $79$ steht links von $80$, die Zahl $87$ dagegen rechts von $80$. Daher $79$ links von $87$, ist also kleiner.
    • $113 > 131$. Die Zahl $113$ steht links von $120$, die Zahl $131$ aber rechts von $120$. Daher ist $113$ kleiner als $131$.
  • Charakterisiere die Lage der Zahlen auf dem Zahlenstrahl.

    Tipps

    Von links nach rechts werden die Zahlen auf dem Zahlenstrahl größer.

    Der linke Nachbar einer natürlichen Zahl ist die nächstkleinere natürliche Zahl. Überlege, ob eine solche Zahl immer existiert.

    Lösung

    Auf dem Zahlenstrahl hat jede Zahl einen rechten Nachbarn, nämlich die nächstgrößere natürliche Zahl. Du findest sie, indem Du $+1$ rechnest. Da der Zahlenstrahl bei $0$ beginnt, gibt es aber genau eine natürliche Zahl, die keinen linken Nachbarn hat, nämlich $0$. Dies ist die kleinste natürliche Zahl. Eine größte natürliche Zahl gibt es nicht, denn zu jeder gegebenen natürlichen Zahl findest Du die nächstgrößere, indem Du $+1$ rechnest. Da der Zahlenstrahl nach links endet, nach rechts aber nicht, findest Du zu jeder Stelle auf dem Zahlenstrahl nur endlich viele kleinere, aber unendlich viele größere Zahlen. Damit erhältst Du folgende Sätze:

    • Genau eine Zahl auf dem Zahlenstrahl ... hat keinen linken Nachbarn.
    • Der rechte Nachbar einer Zahl ... ist größer als die Zahl selbst.
    • Die Anzahl der Stellen einer Zahl auf dem Zahlenstrahl ... nimmt nach rechts zu.
    • Die größte natürliche Zahl ... existiert nicht.
    • Jede natürliche Zahl ... hat unendlich viele größere, aber nur endlich viele kleinere natürliche Zahlen.