30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Lineare Gleichungssysteme zeichnerisch lösen 09:34 min

Textversion des Videos

Transkript Lineare Gleichungssysteme zeichnerisch lösen

Magnolia und Terance bereiten sich auf den großen intergalagtischen Wettkampf mit ihrer Schulklasse vor. Sie sollen ihre Klasse auf die Quartiere verteilen. Um ihnen dabei zu helfen, werden wir lineare Gleichungssysteme graphisch lösen! In dem Begriff, Lineares Gleichungssystem - oder auch kurz LGS, verstecken sich einerseits "lineare Gleichungen", diese kennst du schon in Form von Geradengleichungen. Außerdem geht es um ein "System von Gleichungen". Nur die Lösungen, welchen alle Gleichungen erfüllen, lösen auch das ganze System. "Merke dir dabei folgendes: "Zur Bestimmung von n Variablen benötigst du mindestens n Gleichungen. Anfangs wirst du lernen, zwei Variablen in einem System aus zwei Gleichungen zu bestimmen. Aber zurück zu Magnolia und Terance. In der Klasse sind 30 Schüler - wir brauchen somit 30 Betten. Es wurden 13 Zimmer gebucht! Wir suchen nun die Anzahl der 2-Bett-Zimmer und die Anzahl der 3-Bett-Zimmer, denn größere Zimmer gibt es nicht. Die gesuchten Größen bezeichnen wir als x und y und stellen die gegebenen Informationen mittels dieser Variablen dar: Um aus den verschiedenen Zimmern die Gesamtanzahl der 30 Betten zu erhalten, nehmen wir jeweils die Anzahl der Zimmer mal die Anzahl der enthaltenen Betten: also 2 und 3 mal die entsprechenden Variablen. Außerdem berechnet sich die Anzahl aller Zimmer durch Addition der beiden Zimmeranzahlen. Und nun gehen wir nach folgendem Schema vor: Als erstes bringen wir beide Gleichungen in die Normalform. Hierbei ist m die Steigung und b der y-Achsenabschnitt. Um diese Form zu erreichen, können wir "2x" auf die andere Seite holen und hier das x. Das sieht erstmal so aus. Die erste Gleichung müssen wir noch durch 3 teilen, die zweite liegt bereits nach y aufgelöst vor. Diese beiden Gleichungen können wir nun als Geradengleichungen der Form "y gleich m mal x plus b" betrachten. Im zweiten Schritt wollen wir die beiden zugehörigen Geraden zeichnen. Dabei wird die Anzahl der Zimmer mit zwei Betten auf der x-Achse angezeigt und die mit drei Betten auf der y-Achse. Weißt du noch? - Durch zwei Punkte geht genau eine Gerade! Aus der ersten Gleichung erhalten wir für x gleich Null den y-Wert 10. So erhalten wir den ersten Punkt (0;10). Und setzen wir für x den Wert 3 ein, erhalten wir den y-Wert 8. Das ergibt den zweiten Punkt (3;8). Durch diese Punkte verläuft nun unsere erste Gerade. So machen wir es auch mit der zweiten Geraden. Als nächstes können wir den Geradenschnitt bestimmen! Wir können die Werte des Schnittpunkts direkt ablesen. Wir wissen nun, dass die beiden gegebenen Gleichungen in genau einem Punkt übereinkommen: Es werden also 9 Zimmer mit zwei Betten und 4 Zimmer mit 3 Betten gebraucht! Super, damit haben wir die Lösung gefunden! In der Klasse sind 18 Mädchen und 12 Jungen. Hmm. Mädchen und Jungen schlafen ja meist eher nicht in einem Zimmer!? Klar - alle Mädchen könnten in die 2-Bett-Zimmer gehen.. und alle Jungen in die 3-Bett-Zimmer! Aber gibt es noch eine fairere Lösung? Wir suchen also die Anzahl der 2-Mädchen-Zimmer und die der 3-Mädchen-Zimmer! Und dafür besetzen wir die Variablen x und y neu. Formulieren wir die erste Information als Gleichung: 2-mal die Anzahl aller 2-Mädchen-Zimmer plus 3-mal die Anzahl der 3-Mädchen-Zimmer muss 18 ergeben. Und: 2-mal die Anzahl der 2-Jungen-Zimmer plus 3-mal die Anzahl der 3-Jungen-Zimmer muss 12 ergeben. Mit insgesamt neun 2-Bett-Zimmern erhalten wir hierfür "9 minus x" und wegen den vier 3-Bett-Zimmern erhalten wir hierfür "4 minus y". Nun beginnen wir wieder mit dem Lösen: Die beiden aufgestellten Gleichungen in ihrer Normalform sehen SO aus. Aber die sind ja identisch?! Machen wir mal weiter mit dem zweiten Schritt und zeichnen unsere Geraden. Diesmal beschreibt die x-Achse die Anzahl der Zimmer mit 2 Mädchen und die y-Achse die Anzahl der Zimmer mit 3 Mädchen. Wir zeichnen die erste Gerade durch die Punkte Null, sechs und drei, vier. Die zweite Gerade erhalten wir in diesem Zuge gleich mit - denn die Graphen von identischen Geradengleichungen liegen genau übereinander. Und was ist nun der Geradenschnitt? Übereinanderliegende Geraden schneiden sich sozusagen in jedem ihrer Punkte. Also lösen so viele Punkte unser Gleichungssystem, wie es Punkte auf der Geraden gibt - und das sind unendlich viele! In unserer Aufgabe gibt es aber nur neun Zimmer mit zwei Betten und nur vier Zimmer mit 3 Betten. Außerdem suchen wir eine Anzahl, deshalb müssen x und y natürliche Zahlen sein, somit kommt nur entweder dieser Punkt, dieser oder dieser in Frage. Diese Zimmerverteilung hatten wir schon anfangs abgelehnt! Und in dieser Verteilung bekämen die Jungen nur 2-Bett-Zimmer! Aber dies ist doch eine schöne Aufteilung! - Die nehmen wir! Damit ist die Zimmerverteilung geregelt, wunderbar! - Doch es stellt sich noch eine letzte Frage: Wer wird die Klasse beim Seilspringwettbewerb vertreten? Um den besten Kandidaten zu ermitteln, treten Magnolia und Terance gegeneinander an Armer Terance!! Magnolias kraftvolle Tentakeln haben ihn derart abgelenkt, dass er glatt den Einsatz verpasst hat!! Das verschafft Magnolia einen Vorsprung! Kann Terance sie noch einholen? Magnolia hat schon 42 Sprünge und schafft durchschnittlich 2 Sprünge pro Sekunde! Terance hat noch gar nicht losgelegt und deshalb bisher keine Sprünge er schafft jedoch in der Regel 240 Sprünge in 2 Minuten. Bezeichnen wir die Anzahl an Sekunden mit x und die Anzahl an Sprüngen mit y! Die Anzahl an Magnolias Sprüngen nach x Sekunden ist dann 2 pro Sekunde mal deren Anzahl und sie hat bereits 42 geschafft. Die Anzahl an Terance Sprüngen nach x Sekunden ist "240 in 2 Minuten" oder auch "240 pro 120 Sekunden" mal die Sekundenanzahl und er hat bisher noch keine Sprünge. Die Normalform der beiden Gleichungen ist dies. Nun wollen wir die Geraden einzeichnen, dabei haben wir auf der x-Achse die Anzahl an Sekunden und auf der y-Achse die Anzahl an Sprüngen. Wir zeichnen diese Gerade für Magnolias Sprünge und diese für Terance'. "Die Geraden sind ja parallel! Also haben sie keinen Schnittpunkt." Und das bedeutet, dass das Gleichungssystem keine Lösung hat. Terance hat also keine Chance mehr und Magnolia darf die Klasse im Seilspringen vertreten! Was haben wir denn alles gelernt? Im ersten Schritt bringen wir die Gleichungen in die Normalform. Im zweiten Schritt zeichnen wir die beiden zugehörigen Geraden in ein Koordinatensystem. Zwei Geraden können zusammen entweder so, so oder so aussehen. Im dritten Schritt bestimmen wir den Geradenschnitt! - und den können wir am Graphen ablesen: Schneiden sich die Geraden in einem Punkt, dann ist dieser Schnittpunkt die einzige Lösung. Sind die Geraden identisch, so sind alle Punkte auf der Geraden eine Lösung. - Und das sind unendlich viele. Verlaufen die Geraden parallel, - so gibt es keinen Schnittpunkt und entsprechend auch keine einzige Lösung. Wie schlägt sich denn Magnolia? Wird sie diese Medaille für ihre Klasse holen? Hm, gegen manche Naturgewalten kommt man einfach nicht an!

12 Kommentare
  1. Jonas ohne rahmen

    Hallo Dierk 2,
    bitte beschreibe genauer, was du nicht verstanden hast. Gib beispielsweise die konkrete Stelle im Video mit Minuten und Sekunden an. Gerne kannst du dich auch an den Fach-Chat wenden, der von Montag bis Freitag zwischen 17-19 Uhr für dich da ist.
    Ich hoffe, dass wir dir weiterhelfen können

    Von Jonas Dörr, vor 2 Monaten
  2. Default

    gut

    Von Hbothner, vor 2 Monaten
  3. Default

    Ich raff dass trotzdem nicht ganz

    Von Dierk 2, vor 2 Monaten
  4. Jonas ohne rahmen

    Hallo Maxibaumgaertel,
    ob du y=mx+n oder y=mx+b schreibst, ist Geschmackssache. Welchen Buchstaben du für die Variable verwendest, bleibt im Endeffekt dir überlassen. Wichtig ist in diesem Fall nur zu beachten, dass b (oder in deinem Fall n) den y-Achsenabschnitt beschreibt. In vielen Schulbüchern wird die Variable b verwendet und somit auch in unserem Video. Du kannst aber auch n dafür verwenden.
    Ich hoffe, wir konnten dir weiterhelfen.
    Liebe Grüße aus der Redaktion

    Von Jonas Dörr, vor 2 Monaten
  5. Default

    das heißt y=mx+n !

    Von Maxibaumgaertel, vor 2 Monaten
  1. Default

    Toles vidio!

    Von Barenthien, vor 2 Monaten
  2. Default

    Sehr gutes video hat mir weitergeholfen, danke

    Von Tjard Moll, vor 3 Monaten
  3. Default

    ich habe gar nichts verstanden

    Von Wiktorluka, vor 3 Monaten
  4. Default

    Sehr schnell gesprochen.:(

    Von Tom B., vor 3 Monaten
  5. 20160319 215120

    sehr cooles vidio

    Von Taha T., vor 4 Monaten
  6. Default

    Sehr tol

    Von Richa J., vor 5 Monaten
  7. Default

    Doof die stimme😔🥺🥺🥺

    Von Lariwe, vor 5 Monaten
Mehr Kommentare

Lineare Gleichungssysteme zeichnerisch lösen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Lineare Gleichungssysteme zeichnerisch lösen kannst du es wiederholen und üben.

  • Beschreibe das Vorgehen beim zeichnerischen Lösen eines linearen Gleichungssystems.

    Tipps

    Um die beiden Geraden in ein Koordinatensystem zeichnen zu können, müssen beide Gleichungen in der Normalform $y=mx+b$ vorliegen.

    Wenn du beide Geraden in ein Koordinatensystem eingezeichnet hast, kannst du als nächstes ihren Schnittpunkt ablesen. Dieser ist dann die Lösung des linearen Gleichungssystems.

    Lösung

    Um herauszufinden, wie viele der $13$ Zimmer $2$-Bett-Zimmer und wie viele $3$-Bett-Zimmer sein müssen, soll das folgende lineare Gleichungssystem graphisch gelöst werden:

    $\begin{array}{lllllll} && (1) & & 2x+3y &=& 30 \\ && (2) & & x+y &=& 13 \end{array}$

    Dabei steht die Variable $x$ für die Anzahl der $2$-Bett-Zimmer und $y$ für die Anzahl der $3$-Bett-Zimmer. Wir gehen beim graphischen Lösen dieses linearen Gleichungssystems wie folgt vor:

    • Zunächst bringen wir beide Gleichungen in die Normalform $y=mx+b$. Wir erhalten dann das folgende lineare Gleichungssystem:
    $\begin{array}{lllllll} && (1) & & y &=& -\frac 23x+10 \\ && (2) & & y &=& -x+13 \end{array}$

    • Die Graphen dieser beiden Gleichungen zeichnen wir nun in ein Koordinatensystem ein. Dabei gehen wir so vor:
    • Wir bestimmen für beide Gleichungen je zwei Punkte. Durch diese Punkte verlaufen dann die jeweiligen Geraden.
    • Dann können wir den Schnittpunkt dieser Geraden bestimmen, indem wir diesen einfach nur ablesen. Dabei stellt die $x$-Achse die Anzahl der $2$-Bett-Zimmer und die $y$-Achse die Anzahl der $3$-Bett-Zimmer dar.
    • Wir wissen nun, dass die beiden gegebenen Gleichungen in dem Punkt $(9\vert 4)$ übereinstimmen. Dieser Punkt ist die Lösung des gegebenen linearen Gleichungssystems.
  • Bestimme die Anzahl der Lösungen der gegebenen linearen Gleichungssysteme.

    Tipps

    Wenn zwei Geraden eines linearen Gleichungssystems übereinanderliegen, so besitzt dieses Gleichungssystem unendlich viele Lösungen.

    Das lineare Gleichungssystem zu den hier abgebildeten Geraden besitzt genau eine Lösung. Diese entspricht dem Schnittpunkt der beiden Geraden.

    Lösung

    Bei der graphischen Lösung eines linearen Gleichungssystems unterscheiden wir die folgenden drei Fälle.

    1. Fall: Geraden schneiden sich $\rightarrow$ LGS besitzt genau eine Lösung
    2. Fall: Geraden sind parallel zueinander $\rightarrow$ LGS besitzt keine Lösung
    3. Fall: Geraden sind identisch $\rightarrow$ LGS besitzt unendlich viele Lösungen
    Demnach erhalten wir folgende Lösungen für die gegebenen Graphen:

    Beispiel 1 Die zwei Geraden schneiden sich in dem Punkt $(-1\vert 0)$. Dieser Schnittpunkt ist die Lösung des zugehörigen linearen Gleichungssystems. Dieses hat somit genau eine Lösung.

    Beispiel 2

    Die zwei Geraden sind parallel zueinander. Da diese beiden Geraden in keinem einzigen Punkt übereinstimmen werden, hat das zugehörige lineare Gleichungssystem keine Lösung.

    Beispiel 3

    Die zwei Geraden schneiden sich in dem Punkt $(1\vert2)$. Dieser Schnittpunkt ist die Lösung des zugehörigen linearen Gleichungssystems. Dieses hat somit genau eine Lösung.

    Beispiel 4

    Die zwei Geraden liegen exakt übereinander. Übereinanderliegende Geraden schneiden sich in jedem Punkt. Somit hat das zugehörige lineare Gleichungssystem unendlich viele Lösungen.

  • Stelle das gesuchte lineare Gleichungssystem auf und löse es graphisch.

    Tipps

    Ein Gleichungssystem aus zwei identischen Geraden hat unendlich viele Lösungen.

    Ein Gleichungssystem aus zwei parallelen Geraden hat keine Lösungen.

    Die Gleichungen setzen sich wie folgt zusammen:

    $2\cdot$ Anzahl der $2$-Bett-Zimmer $+3\cdot $ Anzahl der $3$-Bett-Zimmer $=$ Gesamtzahl Personen.

    Die Gleichung $(1)$ stellst du für die Mädchen und die Gleichung $(2)$ für die Jungen auf.

    Bringe die beiden linearen Gleichungen zunächst in die Normalform $y=mx+b$ und zeichne sie anschließend in ein Koordinatensystem ein.

    Lösung

    Zum Aufstellen des gesuchten linearen Gleichungssystems nutzen wir folgende Angaben:

    • neun $2$-Bettzimmer
    • vier $3$-Bettzimmer
    • $18$ Mädchen
    • $12$ Jungen
    Für das lineare Gleichungssystem verwenden wir die folgenden Variablen:

    • $x$: Anzahl der $2$-Bett-Mädchen-Zimmern,
    • $y$: Anzahl der $3$-Bett-Mädchen-Zimmern.
    Demnach entspricht die Anzahl der $2$-Bett-Jungen-Zimmern dem Term $(9-x)$ und die Anzahl der $3$-Bett-Jungen-Zimmern dem Term $(4-y)$. Damit erhalten wir das Gleichungssystem

    $\begin{array}{lllll} (1) & & 2x+3y &=& 18 \\ (2) & & 2(9-x)+3(4-y) &=& 12 \end{array}$

    Die beiden Gleichungen bringen wir nun in die Normalform $y=mx+b$.

    $\begin{array}{lllll} (1) & & y &=& -\frac 23+6 \\ (2) & & y &=& -\frac 23+6 \end{array}$

    Auf diese Weise erhalten wir zwei identische lineare Gleichungen und somit zwei Geraden, die genau übereinanderliegen. Übereinanderliegende Geraden schneiden sich in jedem ihrer Punkte. Somit hat dieses Gleichungssystem unendliche viele Lösungen.

    Es sind allerdings nur neun $2$-Bettzimmer und vier $3$-Bettzimmer gegeben. Außerdem ist hier eine Anzahl gesucht, sodass nur natürliche Zahlen in Frage kommen. Daher treffen nur folgende Punkte als Lösung zu:

    • $(3\vert 4)$,
    • $(6\vert 2)$ und
    • $(9\vert 0)$.
  • Prüfe die Aussagen zu linearen Gleichungssystemen auf ihre Richtigkeit.

    Tipps

    Die Normalform einer linearen Gleichung lautet $y=mx+b$. In dieser Gleichung ist $m$ die Steigung der Geraden und $b$ der $y$-Achsenabschnitt.

    Stimmen Steigung und $y$-Achsenabschnitt zweier Geraden überein, so liegen diese beiden Geraden übereinander.

    Geraden mit unterschiedlichen Steigungen schneiden sich in genau einem Punkt.

    Lösung

    Wir betrachten das folgende lineare Gleichungssystem:

    $\begin{array}{llllr} (1) && y &=& m_1x+b_1 \\ (2) && y &=& m_2x+b_2 \end{array}$

    Die beiden linearen Gleichung sind je in der Normalform gegeben. Die Normalform einer linearen Gleichung lautet $y=mx+b$. In dieser Gleichung ist $m$ die Steigung der Geraden und $b$ der $y$-Achsenabschnitt.

    Für dieses Gleichungssystem schauen wir uns jetzt einige Spezialfälle an.

    Gleiche Steigungen und $y$-Achsenabschnitte

    Wenn $m_1=m_2$ und $b_1=b_2$ gilt, besitzt das lineare Gleichungssystem unendlich viele Lösungen. Es handelt sich dann nämlich um zwei identische Geraden.

    Gleiche Steigungen und unterschiedliche $y$-Achsenabschnitte

    Wenn $m_1=m_2$ und $b_1\neq b_2$ gilt, besitzt das lineare Gleichungssystem keine Lösungen. Es handelt sich dann nämlich um zwei parallele Geraden.

    Unterschiedliche Steigungen

    Wenn $m_1\neq m_2$ gilt, besitzt das lineare Gleichungssystem genau eine Lösung. Es handelt sich dann nämlich um zwei Geraden, welche unterschiedliche Steigungen besitzen und sich somit in genau einem Punkt schneiden.

    Unterschiedliche Steigungen und gleiche $y$-Achsenabschnitte

    Wenn $m_1\neq m_2$ und $b_1=b_2$ gilt, besitzt das lineare Gleichungssystem die Lösung $(0\vert b_1)$. Es handelt sich dann nämlich um zwei Geraden, welche unterschiedliche Steigungen besitzen und die $y$-Achse je im gleichen Punkt schneiden. Somit schneiden sich die beiden Geraden genau in ihren $y$-Achsenschnittpunkten.

  • Bestimme die graphische Lösung der gegebenen linearen Gleichungssysteme.

    Tipps

    Die Normalform einer linearen Gleichung lautet:

    • $y=mx+b$.
    Dabei ist $m$ die Geradensteigung und $b$ der $y$-Achsenabschnitt. Ist die Steigung $m$ zweier Funktionsgleichungen gleich und der $y$-Achsenabschnitt $b$ verschieden, so sind die zugehörigen Geraden parallel.

    Schau dir die hier abgebildete Gerade an.

    • Diese schneidet bei $y=1$ die $y$-Achse. Demnach ist der $y$-Achsenabschnitt $b=1$.
    • Die Steigung bestimmst du mithilfe eines Steigungsdreiecks. Du startest hier im Punkt $(0\vert 1)$ und gehst entlang der $y$-Achse eine Einheit nach unten. Anschließend gehst du $3$ Einheiten entlang der $x$-Achse nach rechts. Es folgt dann $m=\frac {\Delta y}{\Delta x}=-\frac 13$.

    Peter wählt als $x$-Wert $1$ und setzt diesen in die Gleichung $y=x+1$ ein:

    $y=x+1$
    $y=1+1$
    $y=2$.

    Somit schneidet die Gerade der Funktion $y=x+1$ den Punkt $(1\vert2)$.

    Lösung

    Um den graphischen Lösungen die zugehörigen linearen Gleichungen zuordnen zu können, betrachten wir zunächst die Normalform einer linearen Gleichung. Diese lautet:

    • $y=mx+b$.
    Dabei ist $m$ die Geradensteigung und $b$ der $y$-Achsenabschnitt.
    • Die Steigung einer Geraden bestimmst du mithilfe eines Steigungsdreiecks. Dabei teilst du die Anzahl der Einheiten entlang der $y$-Achse durch die Anzahl der Einheiten entlang der $x$-Achse. Ist die Gerade fallend, so ist die Steigung $m$ negativ. Für eine positive Steigung $m$ liegt eine steigende Gerade vor.
    • Den $y$-Achsenabschnitt $b$ kannst du einfach ablesen. Dieser ist nämlich der $y$-Wert, in dem die Gerade die $y$-Achse schneidet.
    Graphische Lösung 1

    Hier abgebildet ist die erste graphische Lösung. Wir sehen zwei Geraden mit den $y$-Achsenabschnitten $2$ und $1$. Es ist also:

    $\begin{array}{lll} (1) && y=m_1x+2 \\ (2) && y=m_2x-1 \end{array}$

    Für die Steigung der ersten Geraden zählen wir ausgehend von $(0\vert 2)$ eine Einheit entlang der $y$-Achse nach unten und eine Einheit entlang der $x$-Achse nach rechts. Es ist also $m_1=-1$. Für die Steigung der zweiten Geraden zählen wir ausgehend von $(0\vert 1)$ zwei Einheiten entlang der $y$-Achse nach oben und eine Einheit entlang der $x$-Achse nach rechts. Es ist somit $m_2=2$ und das gesuchte LGS lautet

    $\begin{array}{lll} (1) && y=-x+2 \\ (2) && y=2x-1 \end{array}$

    Graphische Lösung 2

    Ebenso gehst du bei diesen Geraden vor und erhältst folgendes Gleichungssystem:

    $\begin{array}{lll} (1) && y=-\frac 12x \\ (2) && y=\frac 12x-1 \end{array}$

    Graphische Lösung 3

    Diese Graphen werden folgendem LGS zugeordnet:

    $\begin{array}{lll} (1) && y=x-1 \\ (2) && y=x+1 \end{array}$

  • Ermittle mittels der graphischen Methode die Lösungsmengen der linearen Gleichungssysteme.

    Tipps

    Bringe die Gleichungen eines linearen Gleichungssystems zunächst in die Normalform $y=mx+b$. Zeichne diese anschließend in ein Koordinatensystem.

    Zum Zeichnen einer Geraden genügen zwei Punkte, durch welche diese Gerade verläuft.

    Du kannst mit einer linearen Gleichung der Form $y=mx+b$ für beliebige $x$-Werte die zugehörigen $y$-Werte berechnen, indem du die Größe $x$ in der Gleichung durch die entsprechenden Zahl ersetzt und $y$ ausrechnest. Beachte dabei Punkt- vor Strichrechnung.

    Sind zwei Geraden parallel zueinander, so hat das zugehörige lineare Gleichungssystem keine Lösung. Zwei parallele Geraden haben dieselbe Steigung $m$ in der Geradengleichung $y=mx+b$.

    Lösung

    Im Folgenden möchten wir die gegebenen linearen Gleichungssysteme graphisch lösen. Hierfür bringen wir die Gleichungen der linearen Gleichungssysteme zunächst in die Normalform $y=mx+b$.

    Anschließend zeichnen wir diese in ein Koordinatensystem und lesen die Lösung ab. Dabei können drei Fälle vorliegen.

    1. Fall: Geraden schneiden sich $\rightarrow$ LGS besitzt genau eine Lösung
    2. Fall: Geraden sind parallel zueinander $\rightarrow$ LGS besitzt keine Lösung
    3. Fall: Geraden sind identisch $\rightarrow$ LGS besitzt unendlich viele Lösungen
    Für unsere Beispiele erhalten wir folgende Lösungen.

    Beispiel 1

    $\begin{array}{llllr} (1) && 4x+2y &=& 12 \\ (2) && 2x-4y &=& -4 \end{array}$

    In Normalform lauten die Gleichungen:

    $\begin{array}{llllr} (1) && y &=& -2x+6 \\ (2) && y &=& 0,5x+1 \end{array}$

    Wir zeichnen diese Geraden in ein Koordinatensystem und lesen den Schnittpunkt ab. Wir erhalten dann die Lösungsmenge $\mathbb{L}=\{(2\vert 2)\}$.

    Beispiel 2

    $\begin{array}{llllr} (1) && 2x+y &=& 5 \\ (2) && 2x-2y &=& 2 \end{array}$

    In Normalform lauten die Gleichungen:

    $\begin{array}{llllr} (1) && y &=& -2x+5 \\ (2) && y &=& x-1 \end{array}$

    Wir zeichnen diese Geraden in ein Koordinatensystem und lesen den Schnittpunkt ab. Wir erhalten dann die Lösungsmenge $\mathbb{L}=\{(2\vert 1)\}$.

    Beispiel 3

    $\begin{array}{llllr} (1) && x+0,5y &=& -1 \\ (2) && x-y &=& -1 \end{array}$

    In Normalform lauten die Gleichungen:

    $\begin{array}{llllr} (1) && y &=& -2x-2 \\ (2) && y &=& x+1 \end{array}$

    Wir zeichnen diese Geraden in ein Koordinatensystem und lesen den Schnittpunkt ab. Wir erhalten dann die Lösungsmenge $\mathbb{L}=\{(-1\vert 0)\}$.

    Beispiel 4

    $\begin{array}{llllr} (1) && -x+y &=& 3 \\ (2) && -x+y &=& 1 \end{array}$

    In Normalform lauten die Gleichungen:

    $\begin{array}{llllr} (1) && y &=& x+3 \\ (2) && y &=& -x+1 \end{array}$

    Wir zeichnen diese Geraden in ein Koordinatensystem und lesen den Schnittpunkt ab. Wir erhalten dann die Lösungsmenge $\mathbb{L}=\{(-1\vert 2)\}$.