Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kreuzprodukt – Definition

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.9 / 19 Bewertungen
Die Autor*innen
Avatar
Giuliano Murgo
Kreuzprodukt – Definition
lernst du in der 11. Klasse - 12. Klasse - 13. Klasse

Kreuzprodukt – Definition Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kreuzprodukt – Definition kannst du es wiederholen und üben.
  • Definiere das Vektorprodukt.

    Tipps

    Du kannst die Vektoren zweimal untereinander schreiben und die erste und letzte Zeile streichen:

    $\begin{array}{c} \not{a_{1}}\\ a_2\\ a_3\\ a_1\\ a_2\\ \not{a_3} \end{array} \begin{array}{c} \times\\ \times\\ \times \end{array} \begin{array}{c} \not{b_1} \\ b_2\\ b_3\\ b_1\\ b_2\\ \not{b_3} \end{array}$

    Zunächst werden die zweite und dritte Koordinate über Kreuz multipliziert und die Produkte subtrahiert, dann die dritte und erste und zuletzt die erste und zweite.

    Lösung

    Das Vektorprodukt ist wie folgt definiert:

    $\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$.

    Diese Definition kann man sich wie folgt einprägen:

    $\begin{array}{c} \not{a_1}\\ a_2\\ a_3\\ a_1\\ a_2\\ \not{a_3} \end{array} \begin{array}{c} \times\\ \times\\ \times \end{array} \begin{array}{c} \not{b_1} \\ b_2\\ b_3\\ b_1\\ b_2\\ \not{b_3} \end{array}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$

    Das bedeutet,

    • man schreibt den jeweiligen Vektor zweimal übereinander und
    • streicht die erste und letzte Zeile.
    • Nun werden immer über Kreuz die Koordinaten multipliziert und subtrahiert.

  • Berechne das Vektorprodukt.

    Tipps

    Das Vektorprodukt ist definiert als:

    $\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$

    Schreibe negative Werte immer in Klammern.

    Lösung

    Das Vektorprodukt ist wie folgt definiert:

    $\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$.

    Nun muss man die Vektoren ersetzen:

    $\begin{pmatrix} 1 \\-2\\3 \end{pmatrix} \times \begin{pmatrix} 2 \\ 0\\-2 \end{pmatrix}=\begin{pmatrix} (-2)\cdot (-2)-3\cdot 0 \\ 3\cdot 2-1\cdot (-2) \\ 1\cdot 0-(-2)\cdot 2 \end{pmatrix}=\begin{pmatrix} 4 \\ 8\\ 4 \end{pmatrix}$.

  • Prüfe, welcher Vektor orthogonal zu einem der vorgegebenen Vektoren ist.

    Tipps

    Zwei Vektoren sind orthogonal, bedeutet:

    $\vec u \perp \vec \Leftrightarrow \vec u \cdot \vec v=0$.

    Das Skalarprodukt zweier Vektoren ist wie folgt definiert:

    $\begin{pmatrix} u_1 \\ u_2\\ u_3 \end{pmatrix}\cdot \begin{pmatrix} v_1 \\ v_2\\ v_3 \end{pmatrix} =u_1\cdot v_1+u_2\cdot v_2+u_3\cdot v_3$.

    Du kannst einen zu einem Vektor senkrechten Vektor finden, indem du eine Koordinate auf $0$ setzt, die beiden anderen Koordinaten vertauschst und bei einer Koordinate das Vorzeichen wechselst.

    Zum Beispiel:

    $\vec v=\begin{pmatrix} 1 \\ 2\\ 3 \end{pmatrix}$,

    dann steht der Vektor

    $\vec u=\begin{pmatrix} 0 \\ 3\\ -2 \end{pmatrix}$

    senkrecht auf $\vec v$.

    Wenn ein Vektor $\vec v$ senkrecht auf den Vektor $\vec u$ steht, so steht auch jedes Vielfache von $\vec v$ senkrecht auf $\vec u$.

    Ein Vektor steht weder auf $\vec a$ noch auf $\vec b$ senkrecht.

    Lösung

    Um zu überprüfen, ob zwei Vektoren orthogonal sind, berechnet man das Skalarprodukt. Dieses muss $0$ sein.

    (1)

    $\begin{pmatrix} 1 \\ 1\\ 2 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ -2\\ 1 \end{pmatrix}=1\cdot 0+1\cdot(-2)+2\cdot 1=0$.

    Bei diesen beiden Vektoren kann man erkennen, dass der zweite aus dem ersten hervorgeht durch

    • erste Koordinate gleich $0$ setzen,
    • Vertauschen der zweiten und dritten Koordinate sowie
    • Vertauschen des Vorzeichens in der zweiten Koordinate.
    (2)

    $\begin{pmatrix} 3 \\-2\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1\\ 1 \end{pmatrix}=3\cdot 1+(-2)\cdot1+(-1)\cdot 1=0$.

    (3)

    $\begin{pmatrix} 1 \\ 1\\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1\\ 0 \end{pmatrix}\neq0$ und

    $\begin{pmatrix} 3 \\ -2\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1\\ 0 \end{pmatrix}\neq0$.

    (4)

    $\begin{pmatrix} 1 \\ 1\\ 2 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ -3\\ 0 \end{pmatrix}=1\cdot (-3)+1\cdot(-3)+2\cdot 0=0$.

    (5)

    $\begin{pmatrix} 3 \\-2\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3\\ 0 \end{pmatrix}=3\cdot 2+(-2)\cdot3+(-1)\cdot 0=0$.

  • Bestimme einen zu den beiden Vektoren senkrechten Vektor durch das Vektorprodukt.

    Tipps

    Beachte:

    • das Vektorprodukt zweier Vektoren ist eindeutig,
    • ein zu zwei Vektoren orthogonaler Vektor ist nicht eindeutig, da jedes beliebige Vielfache des orthogonalen Vektors auch wieder orthogonal ist.

    Es genügt nicht zu überprüfen, welcher Vektor orthogonal zu den beiden vorgegebenen Vektoren ist.

    Es gilt $\vec a \times \vec b=-\vec b \times \vec a$.

    Lösung

    Das Vektorprodukt ist wie folgt definiert:

    $\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$.

    Das Ergebnis des Vektorproduktes ist eindeutig. Wird die Reihenfolge der Multiplikation vertauscht, so ändert sich das Vorzeichen in jeder Koordinate des Vektors.

    Nun muss man die Vektoren ersetzen:

    $\begin{pmatrix} 1 \\1\\2 \end{pmatrix} \times \begin{pmatrix} 3 \\ -2\\-1 \end{pmatrix}=\begin{pmatrix} 1\cdot (-1)-2\cdot (-2) \\ 2\cdot 3-1\cdot (-1) \\ 1\cdot (-2)-1\cdot 3 \end{pmatrix}=\begin{pmatrix} 3\\ 7\\ -5 \end{pmatrix}$.

    Ob der gefundene Vektor tatsächlich orthogonal zu den beiden Vektoren steht, kann mit dem Skalarprodukt überprüft werden.

    $\begin{pmatrix} 1 \\1\\2 \end{pmatrix}\cdot \begin{pmatrix} 3\\ 7\\ -5 \end{pmatrix}=1\cdot 3+1\cdot 7+2\cdot (-5)=0~\surd$.

    $\begin{pmatrix} 3 \\-2\\-1 \end{pmatrix}\cdot \begin{pmatrix} 3\\ 7\\ -5 \end{pmatrix}=3\cdot 3+(-2)\cdot 7+(-1)\cdot (-5)=0~\surd$.

  • Ergänze die Bedeutung des Vektorproduktes.

    Tipps

    Das Vektorprodukt von $\vec a=\begin{pmatrix} 1 \\ 1\\ 1 \end{pmatrix}$ sowie $\vec b=\begin{pmatrix} 1 \\ 0\\ 2 \end{pmatrix}$ ist $\vec n=\begin{pmatrix} 2 \\ -1\\ -1 \end{pmatrix}$.

    Das Skalarprodukt zweier Vektoren liefert eine Zahl, einen Skalar.

    Zwei Vektoren sind orthogonal, wenn ihr Skalarprodukt $0$ ist.

    Lösung

    Wenn man zu zwei gegebenen Vektoren einen Vektor finden muss, welcher senkrecht, das heißt orthogonal, zu den beiden Vektoren steht, so kann man dies durch Lösen von Gleichungen tun.

    Dies geht einfacher: mit dem Vektorprodukt.

    Das Vektorprodukt zweier Vektoren, $\vec a$ und $\vec b$, liefert einen Vektor, $\vec n$, im Gegensatz zu dem Skalarprodukt, welches einen Skalar liefert.

    Dieser Vektor ist orthogonal zu den beiden Vektoren, welche multipliziert werden. Das heißt:

    • $\vec n \perp \vec a$ und
    • $\vec n \perp \vec b$.
    Das Vektorprodukt entspricht außerdem dem Flächeninhalt des Parallelogramms, welches durch die beiden Vektoren und deren Gegenvektoren aufgespannt wird.

  • Berechne das Vektorprodukt der beiden Vektoren.

    Tipps

    Das Vektorprodukt ist wie folgt definiert:

    $\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$.

    Du kannst überprüfen, ob dein Ergebnis stimmt: Das Skalarprodukt des Ergebnisvektors mit jedem der beiden multiplizierten Vektoren muss $0$ sein.

    Lösung

    Unter Verwendung der Definition des Vektorproduktes

    $\begin{pmatrix} a_1 \\ a_2\\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2\\ b_3 \end{pmatrix}=\begin{pmatrix} a_2\cdot b_3-a_3\cdot b_2 \\ a_3\cdot b_1-a_1\cdot b_3 \\ a_1\cdot b_2-a_2\cdot b_1 \end{pmatrix}$

    erhält man die folgende Rechnung.

    $\begin{pmatrix} 0 \\ 11\\ 3 \end{pmatrix}\times\begin{pmatrix} 5 \\ -1\\ 3 \end{pmatrix}=\begin{pmatrix} 11\cdot3-3\cdot(-1) \\ 3\cdot 5-0\cdot 3\\ 0\cdot(-1)-11\cdot 5 \end{pmatrix}=\begin{pmatrix} 36 \\ 15 \\ -55 \end{pmatrix}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.155

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.929

Lernvideos

37.066

Übungen

34.321

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden