30 Tage kostenlos testen

Überzeugen Sie sich von der Qualität unserer Inhalte.

Linearkombinationen

Du möchtest schneller & einfacher lernen?

Dann nutze doch Erklärvideos & übe mit Lernspielen für die Schule.

Kostenlos testen
Bewertung

Ø 5.0 / 1 Bewertungen

Die Autor*innen
Avatar
Team Digital
Linearkombinationen
lernst du in der 10. Klasse - 11. Klasse - 12. Klasse - 13. Klasse

Grundlagen zum Thema Linearkombinationen

Nach dem Schauen dieses Videos wirst du in der Lage sein, zu überprüfen, ob ein Vektor als Linearkombination anderer Vektoren darstellbar ist.

Zunächst lernst du, was wir unter einer Linearkombination verstehen. Anschließend gehen wir gemeinsam durch, wie man überprüft, ob ein Vektor als Linearkombination anderer Vektoren darstellbar ist.

Linearkombinationen

Das Video beinhaltet Schlüsselbegriffe, Bezeichnungen und Fachbegriffe wie Linearkombination, Vektor, Vektoraddition und skalare Multiplikation.

Bevor du dieses Video schaust, solltest du bereits die Grundlagen zur Vektoraddition und skalaren Multiplikation kennen. Außerdem solltest du grundlegendes Wissen zu Vektoren haben.

Nach diesem Video wirst du darauf vorbereitet sein, Weiteres zur linearen Unabhängigkeit zu lernen.

Transkript Linearkombinationen

Hast du schonmal Thailändisch gegessen? In der thailändischen Küche wird mit frischen Zutaten und einer großen Palette an Gewürzen gekocht. Dabei werden oft gegensätzliche Aromen kombiniert. So entstehen Geschmacksrichtungen, die wir gar nicht kennen. Welche Kombinationen mit Vektoren möglich sind, schauen wir uns hier an. Eine grundlegende Kombinationsmöglichkeit ist die Vektoraddition. Dabei werden die Vektorpfeile einfach wie eine Kette aneinandergesetzt. So entsteht ein neuer Vektor: der Summenvektor. Analytisch können wir ihn berechnen, indem wir die Vektorkoordinaten zeilenweise addieren. Ganz bestimmt kennst du du auch schon die skalare Multiplikation, bei der man Vektoren mit einer reellen Zahl multipliziert und sie somit vervielfacht. Falls nicht, schau dir dazu nochmal das Video an. Bei einer Linearkombination werden nun diese beiden Rechenoperationen verbunden angewendet. Schauen wir uns das mal an einem Beispiel an. Wir haben den Vektor „eins, null, drei“ und den Vektor „zwei, drei, minus eins“. Jetzt können wir einfach mal das Doppelte des ersten Vektors und die Hälfte des zweiten Vektors addieren. Warum? Ach, - just for fun - einfach weil wirs können. Als Ergebnis erhalten wir wieder einen dreizeiligen Vektor. Für die erste Koordinate rechnen wir „zwei mal eins plus einhalb mal 2“. Also zwei plus eins, das macht drei. Das Gleiche machen wir für die zweite und die dritte Zeile. Wir erhalten den Vektor „drei 1,5 5,5“. Es ist übrigens nicht das Gleiche, wenn wir die Skalare tauschen würden. Addiert man die Hälfte des ersten Vektors mit dem Doppelten des zweiten Vektors, erhalten wir einen komplett anderen Vektor. Wie kommt das? Schauen wir uns das mal im Koordinatensystem an. Das sind die Vektoren a und b. Für die normale Addition würden wir Vektor b einfach an Vektor a dransetzen. Für die erste Linearkombination haben wir aber das Doppelte von Vektor a und die Hälfte von Vektor b addiert. Dadurch entsteht dieser Vektor. Danach haben wir die Hälfte von a und das Doppelte von b addiert. Wie du siehst, erhalten wir als Ergebnis nun einen völlig anderen Vektor. Da wir für die Skalare Alle reellen Zahlen einsetzen dürfen, können wir aus nur zwei Vektoren unendlich viele Linearkombinationen bilden. Jetzt geht die Frage an dich: Welchen Vektor erhalten wir, wenn wir für die Skalare „minus zwei“ und „ein Fünftel“ wählen? Du kannst das Video kurz pausieren und selbst nachrechnen. Wenn du die Skalare einsetzt, müsstest du dieses Ergebnis herausbekommen haben. Wir können auch noch einen dritten und einen vierten Vektor hinzunehmen. Unsere Linearkombination lässt sich beliebig verlängern. Ganz allgemein ausgedrückt ist eine Linearkombination also eine Summe aus beliebig vielen Vektoren, die mit verschiedenen Skalaren multipliziert werden können. Das ist ja alles schön und gut, aber was kann man damit jetzt machen? Zum Beispiel kannst du in Anwendungsaufgaben schneller den Vektor von A nach B bestimmen, indem du schon bekannte Vektoren entsprechend addierst. Außerdem kann man auch untersuchen, ob man aus zwei gegebenen Vektoren, einen bestimmten dritten Vektor durch eine passende Linearkombination bilden kann. Jetzt könnten wir natürlich lange rätseln, wie groß „r-eins“ und „r-zwei“ sein müssten. Wir können aber auch einmal ganz tief in unserem Gedächtnis kramen und an das Lösen von Gleichungssysteme zurückdenken. Genauso eins können wir dann nämlich aufstellen, und lösen, um die passenden Skalare zu ermitteln. Wenn „r-zwei“ gleich drei ist, muss „r-eins“ gleich eins sein. Der Vektor c ist also als Linearkombination der Vektoren a und b darstellbar. Wir müssen nur Vektor a mit eins und Vektor b mit drei multiplizieren. Es gibt aber auch den Fall, dass ein Vektor NICHT als Linearkombination gebildet werden kann. Das ist vielleicht schwer vorstellbar, denn schließlich können wir ja unendlich viele Linearkombinationen basteln. Aber versuche doch mal, DIE Skalare zu finden, mit denen man Vektor d als Linearkombination der Vektoren a und b darstellen kann. Während du dir daran die Zähne ausbeißt, fassen wir die Thematik nochmal zusammen. Eine Linearkombination ist eine Summe von Vielfachen von Vektoren. Die allgemeine Formel dafür sieht so aus. Dabei können wir unendlich viele Vektoren addieren und sie außerdem noch mit allen möglichen reellen Zahlen multiplizieren. Meistens wird jedoch danach gefragt, ob ein bestimmter Vektor als Linearkombination anderer Vektoren dargestellt werden kann. Dafür müssen wir entweder unseren Taschenrechner oder unser Wissen über lineare Gleichungssysteme hervorholen. Können wir das Gleichungssystem lösen, erhalten wir für die Skalare eindeutige Ergebnisse. Dann kann der Vektor c aus den Vektoren a und b gebildet werden und ist somit eine Linearkombination. Ist das Gleichungssystem nicht lösbar, ist der Vektor c nicht als Linearkombination der anderen beiden Vektoren darstellbar. Dieses Wissen brauchst du vor allem, wenn es in der analytischen Geometrie um Ebenen geht. Und sonst? Welche Kombinationen gefallen dir so? Hast du auch schon mal außergewöhnliche Kombinationen probiert? Trau dich ruhig, immer das Gleiche ist ja auch langweilig!

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

4.000

sofaheld-Level

6.574

vorgefertigte
Vokabeln

10.814

Lernvideos

43.880

Übungen

38.605

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden