30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Jetzt Teil der Test-Community werden und tolle Dankeschöns kassieren!

Kreisdiagramme 06:01 min

Textversion des Videos

Transkript Kreisdiagramme

Jedes Jahr nach den Ferien erzählt Otto ganz stolz, was er in der freien Zeit alles gemacht hat. Um einen Überblick über seine Ferienabenteuer zu haben, helfen uns Kreisdiagramme. In diesem Video lernst du, wie ein Kreisdiagramm aufgebaut ist, wie du Daten aus ihm ablesen kannst und wie du es erstellen kannst. Ein Kreisdiagramm ist in verschiedene Sektoren eingeteilt, die einen Anteil des Gesamten darstellen und der Kreis gibt somit die Summe dieser Anteile an. Schauen wir uns doch zunächst einmal an diesem Kreisdiagramm an, was Otto letztes Jahr in seinen Ferien gemacht hat. Die Summe in diesem Kreisdiagramm entspricht den 40 Ferientagen. Der größte Sektor ist dieser hier, der den Tagen entspricht, an denen Otto Fußball gespielt hat. Er entspricht der Hälfte des Kreises. Da der Kreis insgesamt einen Winkel von 360 Grad hat, ist die Hälfte davon 180 Grad. Dieser Sektor entspricht also der Hälfte der Ferientage. Otto hat daher an 20 Tagen Fußball gespielt. Der nächste Sektor entspricht den Tagen, an denen Otto am Strand war. Dies ist ein 90 Grad Winkel, also haben wir hier 90 Grad von 360 Grad und das sind ein Viertel. Wollen wir die Ferientage berechnen, an denen Otto am Strand war, so rechnen wir ein Viertel von 40 und das sind 10. Der dritte Sektor gibt die Tage an, an denen Otto im Kino war. Aber woher wissen wir denn, wie viele Tage das sind? Dazu nehmen wir uns ein Geodreieck zur Hilfe. Dieser Winkel ist 36 Grad groß. Mithilfe des Dreisatzes können wir nun bestimmen, wie viele Tage das sind. 360 Grad, also der gesamte Kreis, steht für 40 Tage. Teilen wir diese beiden Werte nun durch 360 und multiplizieren dann mit 36 so sehen wir, dass dieser Anteil 4 Tagen entspricht. Ebenso kann man diesen Anteil durch das Verhältnis von 36 zu 360 berechnen. Dies ist gekürzt Ein Zehntel und Ein Zehntel von 40 Tagen sind ebenfalls 4 Tage. Nun haben wir schon gesehen, was Otto an 10 + 20 + 4, also 34 Tagen seiner Ferien gemacht hat. Da das Kreisdiagramm alle Ferientage angibt, wissen wir nun, dass der letzte Abschnitt 40 Tagen minus 34 Tagen entspricht. Otto hat also an 6 Tagen Eis gegessen. Schauen wir doch mal, was Otto dieses Jahr in seinen Ferien gemacht hat. Dann können wir dies ebenso in ein Kreisdiagramm eintragen. Insgesamt gab es wieder 40 Tage Ferien und er hat diese mit 5 verschiedenen Aktivitäten verbracht. 14 Tage davon ist er auf einem Drachen geritten. Um den zugehörigen Winkel zu berechnen multiplizieren wir Vierzehn Vierzigstel mit dem Wert des Winkels eines vollen Kreises, also 360 Grad. Dieser Anteil hat einen Winkel von 126 Grad. Zeichnen wir diesen Winkel doch schonmal in unser Kreisdiagramm ein. Wir orientieren uns dabei immer an dem Mittelpunkt des Kreises. Jetzt müssen wir diesen Vorgang nur noch für jede weitere Aktivität wiederholen. 5 Tage hintereinander hat er ein riesiges Feuerwerk gesehen. Wir rechnen also fünf vierzigstel mal 360 Grad und zeichnen den Winkel von 45 Grad so in das Kreisdiagramm ein. 6 Tage lang war er Tiefseetauchen und hat seltene Fische gesehen. Wir rechnen also sechs vierzigstel mal 360 Grad und erhalten einen Winkel von 54 Grad. Außerdem ist er 3 Tage lang in einem Raumschiff geflogen und wurde 12 Tage lang von einer Sterneköchin bekocht. Weil er insgesamt nur 5 Sachen gemacht hat, müssen wir hier nur eine der Winkelgrößen berechnen, da der letzte Abschnitt dem Rest der Ferien entspricht. Berechnen wir den Winkel für die 3 Tage und zeichnen ihn in das Kreisdiagramm ein, so erhalten wir am Ende dieses Kreisdiagramm. Dann können wir erkennen, was Otto in seinen Ferien am meisten gemacht hat. Fassen wir das doch noch einmal zusammen. Ein Kreisdiagramm ist in verschiedene Sektoren eingeteilt, die einen Anteil des Gesamten darstellen. Da die Summe der Anteile die Gesamtzahl ergibt, entspricht die Summe der Sektoren den ganzen Kreis. Man kann mithilfe der Winkelgrößen den Anteil des Ganzen berechnen. Außerdem kann man mithilfe des Anteils die entsprechende Winkelgröße des Kreisdiagramms berechnen und dann einzeichnen. Zum Beweis seiner Ferienabenteuer zeigt Otto allen seine Fotos. Da hat Otto wohl sehr viel Fantasie.