30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Innere Tangenten an zwei Kreise – Konstruktion 06:44 min

Textversion des Videos

Transkript Innere Tangenten an zwei Kreise – Konstruktion

Alles könnte so gemütlich und entspannt sein. Wenn Onkel Finn einem nicht immerzu das Ohr abkauen würde von damals, als er unser paradiesisches Zuhause gefunden hat. Dafür musste er einen giftig brodelnden Abwassersee überqueren! Doch in der Mitte des Sees ragten zwei Ungetüme von Mülltonnen hervor! Um einen Weg daran vorbei zu schaffen, musste er eine innere Tangente an zwei Kreisen konstruieren! Erst einmal sollten wir klären, wie innere Tangenten an Kreisen eigentlich aussehen. Zwei Kreise können weit voneinander entfernt liegen, sie können sich in genau einem Punkt berühren, aber sie können sich auch richtig überschneiden. Eine innere Tangente an zwei Kreisen läuft zwischen ihnen entlang und berührt beide Kreise in genau einem Punkt. Wenn sich die Kreise jedoch überschneiden, passt keine innere Tangente mehr zwischen ihnen hindurch. Berühren sich die Kreise, kann eine innere Tangente gezogen werden, genau durch den Berührpunkt der Kreise. Und liegt etwas Abstand zwischen den Kreisen kann sowohl von der einen Seite als auch von der anderen Seite jeweils eine innere Tangente mit je zwei Berührpunkten konstruiert werden. Und genau das haben wir jetzt vor. Für die Konstruktion beginnen wir mit den Kreismittelpunkten der Kreise und verbinden sie miteinander. Wir wollen nun den Mittelpunkt dieser Verbindungsstrecke bestimmen und benötigen dafür ihre Mittelsenkrechte. Ausgehend von einem Kreismittelpunkt und mit einem Radius, der größer als die Hälfte der Verbindungsstrecke ist, zeichnen wir mit dem Zirkel einen Kreisbogen. Mit genau demselben Radius zeichnen wir jetzt vom anderen Kreismittelpunkt aus. Noch einen Kreisbogen. Die Kreisbogen schneiden sich ober- und unterhalb der Verbindungsstrecke. Wenn wir die Schnittstellen jetzt mit dem Lineal verbinden, ist dies genau der Mittelpunkt der Verbindungsstrecke. Um den herum zeichnen wir einen Hilfskreis, der durch die beiden Kreismittelpunkte verläuft. Vom großen Hauptkreis finden wir die Radiuslänge hier und vom kleinen Hauptkreis die Radiuslänge hier auf der Verbindungsstrecke. Mit dem Zirkel spannen wir EINEN der beiden Radien ein. Den anderen Radius verlängern wir nun um die eingespannte Länge. Vom Kreismittelpunkt aus haben wir jetzt einen zusammengesetzten, neuen Radius, mit dem wir einen neuen Hilfskreis zeichnen. Sein Radius ist so lang wie der große und der kleine Radius zusammen. Nun schauen wir auf die Schnittpunkte der beiden Hilfskreise und verbinden erst den einen mit dem Kreismittelpunkt des kleinen Hauptkreises zu einer Hilfsgeraden. Mit dem anderen Schnittpunkt machen wir genau dasselbe. Außerdem zeichnen wir vom Kreismittelpunkt des großen Hauptkreises durch den oberen Schnittpunkt einen Strahl. Und ebenso durch den unteren Schnittpunkt einen weiteren Strahl. Als Nächstes wollen eine Parallelverschiebung der Hilfsgeraden machen und zwar dem Strahl entgegen, bis der Strahl auf den Hauptkreis trifft. Somit erhalten wir diese Gerade und, indem wir die andere Hilfsgerade parallel verschieben, noch diese Gerade. Sowohl die Gerade berührt den großen und den kleinen Hauptkreis in genau einem Punkt, als auch die Gerade. Damit haben wir die inneren Tangenten der Kreise konstruiert und jeweils die beiden Berührpunkte gefunden! Aber - eine Tangente berührt den Kreis ja nicht nur in genau einem Punkt! Im Berührpunkt muss doch der Radius des Kreises senkrecht auf die Tangente stehen! Aber woher wissen wir denn eigentlich, dass hier rechte Winkel liegen? Die Tangente haben wir durch die Parallelverschiebung dieser Hilfsgeraden erhalten. Bezogen auf diese Streckenabschnitte und diesen Halbkreis dürfen wir den Satz des Thales anwenden! Demnach liegt hier schon einmal ein rechter Winkel. Der Abstand zwischen Tangente und Hilfsgerade ist so groß wie der Abstand zwischen den beiden Kreisen. Der Abstand ist wiederum der übertragene Radius des kleinen Hauptkreises und den finden wir auch am Berührpunkt wieder. Zusammengefasst sind diese beiden Strecken gleich lang. Deshalb und wegen der Parallelität können wir vom rechten Winkel aus dem Thaleskreis auf diesen rechten Winkel schließen. Außerdem führt uns der rechte Winkel im Thaleskreis - ebenfalls aufgrund der Parallelität - auch zu diesem rechten Winkel. Somit steht die Tangente in beiden Berührpunkten senkrecht zum Radius - genau so wollten wir das! Lass uns die Konstruktion der inneren Tangenten noch einmal im Schnelldurchlauf durchgehen. Zuerst verbindest du die Kreismittelpunkte. Mithilfe der Mittelsenkrechten bestimmst du die Mitte, damit du einen ersten Hilfskreis durch die Kreismittelpunkte zeichnen kannst. Danach zeichnest du einen zweiten Hilfskreis, dessen Radius gleich dem Radius des größeren plus den Radius des kleineren Kreises ist. Durch die beiden Schnittpunkte der beiden Hilfskreise und den Mittelpunkt des kleinen Kreises zeichnest du noch jeweils eine Hilfsgerade. Die verschiebst du anschließend parallel bis zum Rand des großen Kreises: fertig sind die inneren Tangenten! Und Onkel Finn, der nahm damals seinen allerletzten Pfeil, band ein starkes Seil daran und schoss den Pfeil gradlinig zwischen den beiden Ungetümen hindurch. Er balancierte in seine neue Heimat und schuf so die berühmte "Legende der Tangente"!

Innere Tangenten an zwei Kreise – Konstruktion Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Innere Tangenten an zwei Kreise – Konstruktion kannst du es wiederholen und üben.

  • Gib wieder, wie man den Mittelpunkt der Verbindungsstrecke zweier Kreismittelpunkte bestimmt.

    Tipps

    Die Mittelsenkrechte schneidet eine Verbindungsstrecke zweier Punkte genau in der Mitte der beiden Punkte.

    Jede Stelle der Mittelsenkrechten hat von den beiden Kreismittelpunkten den gleichen Abstand. Durch die Schnittpunkte der beiden Kreisbogensegmente mit gleichem Radius erhältst du zwei Punkte, die von beiden Kreismittelpunkten den gleichen Abstand haben.

    Lösung

    Den Mittelpunkt der Verbindungsstrecke zweier Kreismittelpunkte kannst du so bestimmen:

    Verbinde zunächst die Kreismittelpunkte zu einer Strecke.

    • Du willst den Mittelpunkt der Verbindungsstrecke zweier Kreismittelpunkte bestimmen. Dazu musst du sie zuerst zeichnen.
    Zeichne um jeden der beiden Kreismittelpunkte je ein Kreisbogensegment mit dem gleichen Radius so, dass diese sich in zwei Punkten schneiden. Beachte, dass der Radius größer ist, als die Hälfte der Verbindungsstrecke.

    • Durch die Schnittpunkte der beiden Kreisbogensegmente mit gleichem Radius erhältst du zwei Punkte, die von beiden Kreismittelpunkten den gleichen Abstand haben.
    Zeichne eine Gerade durch die beiden Schnittpunkte der Kreisbogensegmente.

    Diese Gerade heißt Mittelsenkrechte.

    • Jeder Punkt auf der Mittelsenkrechten hat zu den beiden Kreismittelpunkten jeweils denselben Abstand. Mit den beiden Schnittpunkten, kannst du eine Gerade zeichnen, die dies erfüllt.
    Der Mittelpunkt der Verbindungsstrecke der beiden Kreismittelpunkte ist der Schnittpunkt der Mittelsenkrechten mit der Verbindungsstrecke.

  • Bestimme die korrekten Aussagen zu Tangenten.

    Tipps

    Das ist eine Tangente an einem Kreis.

    Zwei parallele Geraden bilden immer die gleichen Winkel zu einer dritten Geraden, die beide Geraden schneidet. Zum Beispiel gilt hier:

    $\alpha_1=\alpha_2$.

    Lösung

    Diese Aussagen sind falsch:

    „Schneiden sich zwei Kreise in genau einem Punkt, kannst du auch hier zwei innere Tangenten bestimmen.“

    • Hier kannst du nur eine innere Tangente bestimmen. Das ist die Gerade, die senkrecht zu beiden Radien und durch den Schnittpunkt der beiden Kreislinien verläuft.
    „Überschneiden sich zwei Kreise, kannst du nur eine innere Tangente bestimmen.“

    • Bei sich überschneidenden Kreisen kannst du keine innere Tangente bestimmen.
    „Eine Gerade steht senkrecht zum Radius eines Kreises. Nach einer Parallelverschiebung dieser Geraden steht sie nicht mehr senkrecht zum Radius des Kreises.“

    • Eine Parallelverschiebung erhält die Winkelbeziehungen der verschobenen Geraden.
    Diese Aussagen sind korrekt:

    „Bevor du innere Tangenten konstruieren kannst, musst du zuerst eine Mittelsenkrechte zwischen den Kreismittelpunkten bestimmen.“

    • Da du für die Konstruktion der Tangenten einen Kreis um den Mittelpunkt der Verbindungsstrecke der Kreismittelpunkte zeichnen musst, musst du diesen Mittelpunkt zuerst mit Hilfe der Mittelsenkrechten bestimmen.
    „Eine Tangente an einen Kreis schneidet diesen in genau einem Punkt und steht senkrecht zum Radius des Kreises.“

    • Das sind die Bedingungen für eine Tangente an einen Kreis.
  • Beschreibe, wie man eine innere Tangente an zwei Kreisen konstruiert.

    Tipps

    Der Radius des zweiten Hilfskreises ist größer als die Radien der beiden einzelnen Kreise.

    Stehen zwei Geraden im Winkel $\alpha$ zueinander und führt man eine Parallelverschiebung einer der beiden Geraden durch, bleibt dieser Winkel $\alpha$ erhalten.

    Lösung

    Hast du den Mittelpunkt der Verbindungslinie zweier Kreismittelpunkte gegeben, kannst du so die inneren Tangenten konstruieren:

    „Zuerst zeichnest du einen Hilfskreis um den Mittelpunkt der Verbindungsstrecke der beiden Kreismittelpunkte.“

    • Mit diesem Hilfskreis kannst du den Satz des Thales anwenden. Dieser besagt, dass jedes Dreieck, das sich aus den Eckpunkten des Durchmessers eines Kreises und einem dritten Eckpunkt auf dem Kreisrand zusammensetzt, einen rechten Winkel in diesem dritten Eckpunkt besitzt.
    „Anschließend zeichnest du einen weiteren Hilfskreis um den Mittelpunkt des großen Kreises. Der Radius dieses zweiten Hilfskreises entspricht der Summe der beiden Kreisradien.“

    „Dann zeichnest du Hilfsgeraden durch die Schnittpunkte der Hilfskreise und den Mittelpunkt des kleinen Kreises.“

    • Da die Schnittpunkte der beiden Hilfskreise auf dem Thaleskreis liegen, haben die gezeichneten Geraden einen rechten Winkel zum verlängerten Radius des großen Hilfskreises.
    „Mit einer Parallelverschiebung verschiebst du die Geraden auf die Kreisränder. Die resultierenden Geraden sind die inneren Tangenten.“

    • Durch die Parallelverschiebung bleibt der rechte Winkel erhalten. Die beiden Geraden liegen also jeweils im rechten Winkel zum Radius der beiden Kreise und berühren die Kreise in genau einem Punkt. Das sind die Bedingungen für Tangenten.
  • Bestimme die korrekten Aussagen zu inneren Tangenten.

    Tipps

    Da Tangenten Geraden sind, haben sie überall die gleiche Steigung. Gehst du auf einer Geraden einen Schritt nach rechts (auf der $x$-Achse), dann bewegt sich die Gerade immer um einen konstanten Schritt nach oben oder unten (auf der $y$-Achse). Die hier gezeichneten Tangenten erfüllen dasselbe Prinzip.

    So sehen die konstruierten inneren Tangenten an zwei unterschiedlich großen Kreisen aus.

    Lösung

    Diese Aussagen sind falsch:

    „Sind die Kreise unterschiedlich groß, ist der Schnittpunkt der inneren Tangenten immer näher am größeren Kreis.“

    • Weil Tangenten Geraden sind, haben sie überall die gleiche Steigung. Gehst du auf einer Geraden einen Schritt nach rechts (auf der $x$-Achse), dann bewegt sich die Gerade immer um einen konstanten Schritt nach oben oder unten (auf der $y$-Achse). Die hier gezeichneten Tangenten erfüllen dasselbe Prinzip. Der Rand des kleinen Kreises ist jedoch weniger weit von der Verbindungslinie der Kreismittelpunkte (in der Skizze die $x$-Achse) entfernt, als der Rand des großen Kreises. Deshalb muss der Schnittpunkt näher am kleinen Kreis liegen.
    „Schneiden sich die beiden Kreise in zwei Punkten, wandert der Schnittpunkt der Tangenten ins Innere des kleinen Kreises.“

    • Hier existieren keine Tangenten, da die beiden Bedingungen für Tangenten nicht erfüllt werden können.
    Diese Aussagen sind richtig:

    „Sind die Kreise gleich groß, schneiden sich die inneren Tangenten im Mittelpunkt der Verbindungslinie der beiden Kreismittelpunkten.“

    • Auch hier haben die Tangenten überall die gleiche Steigung. Allerdings sind die beiden Kreisränder gleich weit von der Verbindungslinie der Kreismittelpunkte (in der Skizze die $x$-Achse) entfernt. Also müssen sie den gleichen Weg auf der $y$-Achse zurücklegen. Damit schneiden sich die Tangenten im Mittelpunkt der Verbindungslinie der Kreismittelpunkte.
    „Egal wie weit die beiden Kreise auseinander liegen, der Schnittpunkt ihrer inneren Tangenten liegt immer auf der Verbindungslinie der beiden Kreismittelpunkte.“

    • Die oberen und unteren Ränder der beiden Kreise sind immer gleich weit von der Verbindungslinie der Kreismittelpunkte entfernt. Da die beiden Geraden betragsmäßig die gleiche Steigung haben, müssen sie sich in der Mitte, also auf der Verbindungslinie der Kreismittelpunkte treffen.
    „Sind beide Kreise gleich groß, weist die Zeichnung doppelte Achsensymmetrie auf.“

    • Unabhängig von der Größe der Kreise ist die Zeichnung achsensymmetrisch mit der Verbindungslinie der Kreismittelpunkte als Symmetrieachse. Sind die beiden Kreise gleich groß, kommt eine Symmetrieachse hinzu, die senkrecht zu dieser Verbindungslinie steht und durch den Schnittpunkt der Tangenten verläuft.
  • Erkläre die verschiedenen Schritte beim Konstruieren von inneren Tangenten.

    Tipps

    So konstruierst du die Mittelsenkrechte zwischen den beiden Kreismittelpunkten.

    Die rot markierte Linie ist die Mittellinie des Geodreiecks.

    Lösung

    So kannst du jeden Konstruktionsschritt durchführen:

    • Konstruktion einer Mittelsenkrechten zwischen zwei Punkten.
    Schlage zwei Kreisbogensegmente mit gleichem Radius um die Punkte und verbinde die Schnittpunkte mit einer Geraden.

    • Zeichnen eines Hilfskreises um den Mittelpunkt zwischen zwei Punkten.
    Zeichne um den Mittelpunkt einen Kreis mit einem Radius, der dem Abstand zwischen dem Mittelpunkt und einem der Punkte entspricht.

    • Konstruktion des Radius für einen Hilfskreis, der so groß ist wie der Radius des kleinen und der Radius des großen Kreises zusammen.
    Stelle den Zirkel auf den Radius des kleinen Kreises ein und verlängere den Radius des großen Kreises um diese Strecke.

    • Parallelverschiebung der Geraden.
    Richte die Mittellinie des Geodreiecks an den Strahlen aus und verschiebe die Hilfsgeraden so weit, bis sie beide Kreise in einem Punkt schneiden.

  • Erkläre, warum die Konstruktion funktioniert.

    Tipps

    Der Satz des Thales handelt von rechten Winkeln in Halbkreisen.

    Ist $A$ der Mittelpunkt des großen Kreises, entspricht die Strecke $\overline{AC}$ dem Radius dieses Kreises.

    Lösung

    Du kannst die Konstruktion folgendermaßen begründen:

    „Bei der Konstruktion betrachtet man einen Halbkreis. Die Endpunkte des Durchmessers $A$ und $B$ und ein beliebiger Punkt $C$ auf dem Halbkreis bilden ein Dreieck. Der Satz des Thales besagt, dass beim Punkt $C$ ein rechter Winkel liegt.“

    • In der Grafik wird der Durchmesser durch die Punkte $A$ und $B$ begrenzt. Am Eckpunkt $C$ liegt ein rechter Winkel.
    „Das macht man sich bei der Konstruktion von inneren Tangenten zunutze. Der Hilfskreis um den Mittelpunkt der Verbindungsstrecke der Kreismittelpunkte entspricht dem Thaleskreis. Die Hilfsgerade und der Strahl, der den Radius des großen Kreises verlängert, bilden also einen rechten Winkel.“

    • Die Erkenntnisse des Thaleskreises kannst du jetzt auf die Konstruktion der Tangenten anwenden. Hier macht man sich den rechten Winkel im Eckpunkt $C$ zunutze. An diesem Winkel liegen der Radius des großen Kreises und die Hilfsgerade an.
    „Die Differenz der Radien des zweiten Hilfskreises und des großen Kreises beträgt genau den Radius des kleinen Kreises. Deshalb landet die Hilfsgerade bei einer Parallelverschiebung gleichzeitig auf beiden Kreisrändern.“

    • Da die Hilfsgerade genau um die Länge des kleinen Radius entlang des großen Radius parallelverschoben wird, landet sie gleichzeitig auf beiden Kreisrändern.
    „Bei der Parallelverschiebung bleiben die Winkelbeziehungen der Geraden mit den Radien erhalten. Die verschobene Gerade ist senkrecht zu beiden Kreisradien und berührt jede der Kreislinien in genau einem Punkt. Das sind genau die Voraussetzungen für eine Tangente.“