Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kreisausschnitt – Einführung

Was ist ein Kreisausschnitt? Ein Kreisausschnitt ist ein Teil einer Kreisfläche, begrenzt von einem Kreisbogen und zwei Radien. Lerne, wie man die Fläche eines Kreisausschnitts berechnet, und entdecke Beispiele. Interessiert? Dies und vieles mehr findest du im folgenden Text.

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.1 / 52 Bewertungen
Die Autor*innen
Avatar
Team Digital
Kreisausschnitt – Einführung
lernst du in der 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Kreisausschnitt – Einführung Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kreisausschnitt – Einführung kannst du es wiederholen und üben.
  • Bestimme den Flächeninhalt eines Kreisausschnitts.

    Tipps

    Der Anteil des Mittelpunktswinkels $\alpha$ eines Kreissektors am Gesamtinnenwinkel des Kreises ($360^°$) ist genauso groß wie der Anteil der Fläche des Kreissektors an der gesamten Kreisfläche.
    Diese Verhältnisgleichheit kannst du als Gleichung ausdrücken, und diese Gleichung kannst du nach der gesuchten Größe umstellen.

    Beachte beim Quadrieren einer Zahl mit Einheit, dass du sowohl Zahl als auch Einheit quadrierst. Schreibe deshalb immer eine Klammer um die Zahl mit Einheit. Ein Beispiel:

    $(5\,\text{m})^2=5^2\,\text{m}^2=25\,\text{m}^2$.

    Möchtest du eine Gleichung, in der auf einer Seite nur ein Bruch steht, nach dessen Zähler umstellen, multiplizierst du beide Seiten der Gleichung mit dem Nenner dieses Bruches:

    $ \begin{array}{lll} \frac{a}{b}&=&\frac{n}{m}&\vert~\cdot b\\ a&=&\frac{n}{m}\cdot b&\\ \end{array} $

    Lösung

    Um die Größe seines Kreissektors zu berechnen, unternimmt Finbar die folgenden Schritte:

    Finbar beginnt, indem er die Verhältnisgleichung aufstellt:

    $\frac{A_S }{A_{\circ}}= \frac{\alpha}{360^°} .$

    • Das Verhältnis des Mittelpunktswinkels $\alpha$ des Kreissektors zum gesamten Innenwinkel $360^°$ ist genauso groß wie das der Fläche des Kreissektors $A_S$ zur gesamten Kreisfläche $A_\circ$. Diese Verhältnisgleichheit ist der Ausgangspunkt zur Berechnung der Fläche des Kreissektors.
    Diese Gleichung kann er nach dem Flächeninhalt des Kreissektors umformen:

    $A_S= \frac{\alpha}{360^°} \cdot A_{\circ}$.

    • Um den Flächeninhalt des Kreissektors $A_S$ auf der linken Seite der Gleichung zu isolieren, multipliziert Finbar hier beide Seiten der Gleichung mit $A_\circ$.
    Jetzt ersetzt er den Flächeninhalt des gesamten Kreises durch die ihm bekannte Formel:

    $A_S= \frac{\alpha}{360^°} \cdot \pi \cdot r^2$

    • Die Gleichung für den Flächeninhalt eines Kreises lautet $A_\circ=\pi \cdot r^2$.
    Schließlich kann er die gegebenen Größen einsetzen:

    $A_S= \frac{60^°}{360^°} \cdot \pi \cdot (8~\text{m})^2$.

    • Wir müssen die Werte für $\alpha$ und $r$ kennen. Ist uns nur einer oder keiner dieser Werte gegeben, können wir keinen Zahlenwert für den Flächeninhalt des Kreissektors ausrechnen.
    Vereinfachen:

    $A_S= \frac{1}{6} \cdot \pi \cdot 64~\text{m}^2$.

    • Beachte beim Quadrieren die Klammern um Zahl und Einheit. Diese sorgen dafür, dass sowohl die Zahl als auch die Einheit quadriert wird.
    Und Ausrechnen:

    $A_S \approx 33,5~\text{m}^2$.

    • Nachdem wir den Bruch $\frac{64}{6}$ noch mit $2$ gekürzt haben, sind wir mit dem Umformen fertig. Jetzt hilft nur noch der Taschenrechner!
  • Bestimme den Flächeninhalt des Kreisausschnitts mit verdoppeltem Radius.

    Tipps

    Die Gleichung für den Flächeninhalt eines Kreises lautet: $A=\pi r^2$.

    Steht eine Einheit im Nenner und Zähler eines Bruchs, kannst du sie wie einen Faktor herauskürzen. Zum Beispiel:

    $\dfrac{30^°}{50^°}=\dfrac{30}{50}=\dfrac{3}{5}$.

    Lösung

    Finbar berechnet die Größe des neuen Kreissektors folgendermaßen:

    Der verdoppelte Radius hat eine Länge von $r=16~\text{m}$. Die Gleichung für den Flächeninhalt des Kreissektors lautet:

    $A_S= \frac{\alpha}{360^°} \cdot A_{\circ}=\frac{\alpha}{360^°} \cdot \pi r^2$.

    • Die Gleichung für den Flächeninhalt des kompletten Kreises lautet $A_\circ=\pi r^2$.
    Er setzt seine gegebenen Größen ein:

    $A_S=\frac{60^°}{360^°}\cdot\pi (16~\text{m})^2$.

    $\frac{60^°}{360^°}$ vereinfacht sich zu $\frac{1}{6}$.

    • Steht eine Einheit (hier Grad) im Nenner und Zähler eines Bruchs, kannst du sie herauskürzen.
    Und außerdem gilt: $(16~\text{m})^2=256~\text{m}^2$.

    • Beachte die Klammern um die Zahl und die Einheit. Sie sorgen dafür, dass sowohl die Zahl $16$ als auch die Einheit $\text{m}$ quadriert wird.
    Damit kann er die die Fläche des Kreissektors bestimmen:

    $A_S=\frac{1}{6} \cdot \pi~ 256~\text{m}^2 \approx134 ~\text{m}^2$.

  • Berechne die Flächen der Kreissektoren.

    Tipps

    Die Flächeninhalte der Kreissektoren kannst du mit der folgenden Formel bestimmen:

    $A_S= \frac{\alpha}{360^°} \cdot \pi r^2$.

    Lösung

    Die Flächeninhalte der Kreissektoren kannst du mit folgender Formel bestimmen:

    $A_S= \frac{\alpha}{360^°} \cdot \pi r^2$.

    Wenn du jeweils die gegebenen Werte für $\alpha$ und $r$ einsetzt, ergeben sich nach dem immer gleichen Schema die folgenden Flächeninhalte:

    • Für $r=2~\text{m}$ und $\alpha=90^°$: $A_S= \frac{90^°}{360^°} \cdot \pi (2~\text{m})^2\approx3,14~\text{m}^2$.
    • Für $r=4~\text{m}$ und $\alpha=90^°$: $A_S= \frac{90^°}{360^°} \cdot \pi (4~\text{m})^2\approx12,57~\text{m}^2$.
    • Für $r=6~\text{m}$ und $\alpha=75^°$: $A_S= \frac{75^°}{360^°} \cdot \pi (6~\text{m})^2\approx23,56~\text{m}^2$.
    • Für $r=12~\text{m}$ und $\alpha=75^°$: $A_S= \frac{75^°}{360^°} \cdot \pi (12~\text{m})^2\approx94,25~\text{m}^2$.
  • Bestimme die Flächeninhalte der Kreissektoren.

    Tipps

    Aus den Bildern kannst du den Mittelpunktswinkel $\alpha$ und den Radius $r$ des Kreisausschnitts ablesen.

    Lösung

    Aus den Bildern kannst du den Mittelpunktswinkel $\alpha$ und den Radius $r$ des Kreisausschnitts ablesen. Mit der Formel

    $A_S= \frac{\alpha}{360^°} \cdot \pi r^2$

    kannst du schließlich den Flächeninhalt der Kreissektoren bestimmen und diese der Größe nach sortieren. Damit erhältst du:

    • $A_S= \frac{30^°}{360^°} \cdot \pi (0,9~\text{m})^2=0,21~\text{m}^2 $,
    • $A_S= \frac{270^°}{360^°} \cdot \pi (0,6~\text{m})^2=0,85~\text{m}^2 $,
    • $A_S= \frac{135^°}{360^°} \cdot \pi (1,15~\text{m})^2=1,56~\text{m}^2 $,
    • $A_S= \frac{90^°}{360^°} \cdot \pi (5~\text{m})^2=19,63~\text{m}^2 $,
    • $A_S= \frac{270^°}{360^°} \cdot \pi (3,5~\text{m})^2=28,86~\text{m}^2 $.
  • Bestimme die korrekten Aussagen zu Kreisausschnitten.

    Tipps

    Der Flächeninhalt des Kreissektors $A_S$ ist ein Anteil am Flächeninhalt des gesamten Kreises.

    Der Mittelpunktswinkel $\alpha$ liegt zwischen den begrenzenden Radien des Kreissektors.

    Lösung

    Diese Aussagen sind falsch:

    „Der Mittelpunktswinkel $\alpha$ kann beliebig große Werte annehmen.“

    • Der Mittelpunktswinkel $\alpha$ kann nur Werte zwischen $0$ und $360^°$ annehmen (mathematisch ausgedrückt: $0\leq \alpha \leq 360^°$).
    „Die Formel zur Berechnung der Fläche eines Kreisausschnitts lautet:

    $A_S=\pi \cdot r^2$.“

    • Das ist die Formel für die Berechnung des Gesamtflächeninhalts. Die Formel für den Flächeninhalt des Kreissektors lautet: $A_S= \frac{\alpha}{360^°} \cdot \pi r^2$.
    Diese Aussagen sind korrekt:

    „Der Radius $r$ eines Kreises ist halb so lang wie sein Durchmesser.“

    • Der Durchmesser ist definiert als die Länge einer Sekante, die durch den Mittelpunkt des Kreises geht. Das ist dasselbe, als würde man den Radius des Kreises zu zwei Punkten einzeichnen, die sich auf dem Kreis genau gegenüberliegen. Dementsprechend ist der Durchmesser genau doppelt so lang wie der Radius, der Radius also halb so lang wie der Durchmesser.
    „In einem Kreis entspricht der Anteil des Mittelpunktswinkels $\alpha$ am Gesamtinnenwinkel von $360^°$ immer dem Anteil des Flächeninhalts $A_S$ des Kreissektors mit diesem Mittelpunktswinkel am Gesamtflächeninhalt $A_{\circ}$.“

    • Diesen Zusammenhang kannst du auch durch die Formel $\frac{A_S }{A_{\circ}}= \frac{\alpha}{360^°} $ ausdrücken.

    „Der Flächeninhalt des Kreissektors $A_S$ kann nie größer als der Flächeninhalt des gesamten Kreises werden.“

    • Der Flächeninhalt des Kreissektors $A_S$ ist per Definition ein Anteil des Flächeninhalts des gesamten Kreises. Damit ist der Flächeninhalt des gesamten Kreises immer die obere Grenze des Flächeninhalts des Kreissektors.
  • Erarbeite die Bestimmung der Längen von Kreisliniensegmenten.

    Tipps

    Die Berechnung von Anteilen des Kreisumfangs verläuft analog zur Berechnung von Anteilen der Kreisfläche.

    Lösung

    In einem Kreis entspricht der Anteil der Länge eines Kreisbogens $l$ am kompletten Kreisumfang $u$ dem Anteil des Mittelpunktswinkels $\alpha$ am Gesamtinnenwinkel von $360^°$. Das kann John auch als Formel ausdrücken:

    $\frac{\alpha}{360^°}=\frac{l}{u}$.

    • Den Anteil eines Kreisbogens am Kreisumfang können wir also prinzipiell genauso berechnen wie den Anteil einer Kreissektorfläche an der gesamten Kreisfläche.
    Das stellt er nach der Länge des Kreisbogens um:

    $l=\frac{\alpha}{360^°}\cdot u$.

    Die Formel zur Berechnung des Umfangs eines Kreises lautet:

    $u=2 \pi r$.

    • Diese Formel solltest du nicht mit der Formel für die Kreisfläche verwechseln. Hier kann dir eine Einheitenbetrachtung helfen: Der Kreisumfang ist eine Länge, muss also die Einheit $\text{m}$ (bzw. $\text{cm}$,$\,\text{mm}$,$\,\text{km}$,...) haben. Deshalb kann der Radius in dieser Formel nur linear (also mit der Potenz $1$) vorkommen, denn sonst würde sich die Einheit $\text{m}^2$ ergeben!
    Eingesetzt in die Formel für die Kreisbogenlänge erhält er:

    $l=\frac{\alpha}{360^°} \cdot 2 \pi r$.

    Jetzt kann John endlich die Länge seines Kreisbogensegments berechnen:

    $l=\frac{100^°}{360^°}\cdot 2 \pi \cdot 12~\text{m} = 20,94~\text{m}$.

    • Die Rechnung verläuft also völlig analog zur Berechnung der Fläche eines Kreissektors. Oben haben wir nach der Länge des Kreisbogens umgestellt, dann die entsprechende Formel benutzt (hier die für den Kreisumfang, vorher die für die Kreisfläche) und schließlich die gegebenen Zahlenwerte eingesetzt.
    Der Kreissektor wird außerdem von zwei Radien begrenzt. Johns Zaun wird also

    $l+2r=20,94~\text{m}+2\cdot 12~\text{m}=44,94~\text{m}$

    lang werden.

    • Das Grundstück wird nicht nur durch den Kreisbogen begrenzt, sondern auch durch zwei Radien an den Seiten. Deren Länge addieren wir also zur Länge des Kreisbogens, um die Gesamtlänge der Grundstücksumrandung - also die, die der Zaun haben wird - zu erhalten.