Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Äußere Tangenten an zwei Kreisen – Konstruktion

"Äußere Tangenten an zwei Kreise zu konstruieren, bedeutet, Geraden zu finden, die beide Kreise berühren. Im Text lernst du anhand anschaulicher Schritte, wie du diese konstruierst. Verwende den Satz des Thales, um die äußeren Tangenten zu bestätigen. Interessiert? Weitere Details und Übungen erwarten dich im Text."

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 41 Bewertungen
Die Autor*innen
Avatar
Team Digital
Äußere Tangenten an zwei Kreisen – Konstruktion
lernst du in der 7. Klasse - 8. Klasse

Äußere Tangenten an zwei Kreisen – Konstruktion Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Äußere Tangenten an zwei Kreisen – Konstruktion kannst du es wiederholen und üben.
  • Gib wieder, wie man den Mittelpunkt der Verbindungslinie zweier Kreismittelpunkte findet.

    Tipps

    Die Mittelsenkrechte schneidet eine Verbindungslinie zweier Punkte genau in der Mitte der beiden Punkte.

    Alle Punkte auf einem Kreis haben den gleichen Abstand vom Kreismittelpunkt. Schneiden sich also die beiden Kreisbogensegmente mit gleichem Radius, hat der Schnittpunkt den gleichen Abstand von beiden Kreismittelpunkten.

    Lösung

    Für die Konstruktion des Mittelpunktes der Verbindungslinie zweier Kreismittelpunkte musst du die Mittelsenkrechte dieser Verbindungslinie bestimmen. Das geht wie folgt:

    • Zuerst verbindet man die Kreismittelpunkte mit einer Linie.
    Um die Mittelsenkrechte der Verbindungslinie zu konstruieren, musst du diese Linie als Erstes zeichnen.
    • Dann zeichnet man um jeden der beiden Kreismittelpunkte ein Kreisbogensegment mit dem gleichen Radius. Dieser Radius muss größer sein als die Hälfte der Verbindungsstrecke.
    Jede Stelle der Mittelsenkrechten hat von beiden Endpunkten den gleichen Abstand. Auf diese Weise bestimmst du also zwei Punkte, die den gleichen Abstand von beiden Endpunkten haben.
    • Die Kreisbogensegmente schneiden sich in zwei Punkten. Durch diese zeichnet man eine Gerade.
    • Diese Gerade ist die Mittelsenkrechte.
    Wenn du zwei Punkte einer Geraden kennst, dann kannst du sie eindeutig einzeichnen.
    • Dort, wo sich die Mittelsenkrechte und die Verbindungslinie der Kreismittelpunkte schneiden, ist der Mittelpunkt der Verbindungslinie der beiden Kreismittelpunkte.
  • Beschreibe, wie man eine Tangente konstruiert.

    Tipps

    Um die Tangenten zu konstruieren, musst du zwei Hilfskreise zeichnen.

    Durch die zwei Punkte, in denen sich die Hilfskreise schneiden, werden zwei Geraden gezogen.

    Lösung

    Um mit dem Mittelpunkt der Verbindungslinie der Kreismittelpunkte eine Tangente an die beiden Kreise zu konstruieren, gehst du folgendermaßen vor:

    • Zuerst zeichnet man einen Hilfskreis um den Mittelpunkt $M$ der Verbindungslinie der beiden Kreismittelpunkte.
    Dieser Hilfskreis ermöglicht dir die Anwendung des Satzes des Thales. Zur Erinnerung: Dieser besagt, dass jedes Dreieck, dessen Basis die Verbindungslinie der Kreismittelpunkte ist und dessen dritter Eckpunkt auf dem Hilfskreis liegt, beim dritten Eckpunkt einen rechten Winkel besitzt.
    • Danach zeichnet man einen weiteren Hilfskreis in den größeren Kreis. Der Radius dieses Hilfskreises beträgt die Differenz zwischen dem größeren und dem kleineren Radius der beiden Kreise.
    • Jetzt zeichnet man Geraden durch die Schnittpunkte der beiden Hilfskreise und den Mittelpunkt des kleinen Kreises.
    Der jeweilige Schnittpunkt der beiden Hilfskreise ist dann ein Eckpunkt eines Dreiecks, auf das du den Satz des Thales anwenden kannst. Die gezeichneten Geraden stehen also senkrecht auf dem Radius des großen Kreises.
    • Diese beiden Geraden werden durch eine Parallelverschiebung auf die Kreisränder verschoben. Die resultierenden Geraden sind die Tangenten an den beiden Kreisen.
    Du verschiebst also nun die Geraden um den Radius des kleinen Kreises nach außen. Damit erhältst du zwei Geraden, die die beiden ursprünglichen Kreise jeweils in genau einem Punkt berühren und die senkrecht zu den beiden Radien stehen. Und das sind genau die beiden Bedingungen für Tangenten!
  • Erkläre, wie man eine Tangente an zwei Kreisen konstruiert.

    Tipps

    Zu Beginn zeichnet man den Hilfskreis, der die Anwendung des Satzes des Thales ermöglicht.

    Um einen Schnittpunkt der Hilfskreise zu bestimmen, muss man diese zuerst gezeichnet haben.

    In diesem Bild siehst du die fertige Konstruktion. Dabei sind die gegebenen Kreise schwarz gefärbt.

    Lösung

    Die Konstruktion der Tangente vom Mittelpunkt der Verbindung der Kreismittelpunkte funktioniert folgendermaßen:

    • Ist der Mittelpunkt der Verbindung der beiden Kreismittelpunkte gegeben, zeichnet man zuerst einen Hilfskreis um diesen Mittelpunkt, auf dem die beiden Kreismittelpunkte liegen.
    Dieser Hilfskreis ermöglicht die Anwendung des Satzes des Thales.

    • In den größeren der gegebenen Kreise wird nun ein zweiter, kleinerer Hilfskreis eingezeichnet. Dafür geht er vom Rand des größeren Kreises aus und trägt den Radius des kleinen Kreises vom Radius des großen Kreises ab.
    • Dann zeichnet er den kleinen Hilfskreis mit dem gerade konstruierten Differenzradius um den Mittelpunkt des großen Kreises.
    • Nun konstruiert er zwei Hilfsgeraden, indem er die Schnittpunkte der zwei Hilfskreise mit dem Mittelpunkt des kleinen Kreises verbindet.
    Der Schnittpunkt der beiden Hilfskreise bildet eine Ecke des Dreiecks, auf das wir den Satz des Thales anwenden. Die gezeichneten Geraden stehen jetzt senkrecht auf dem Radius des großen Kreises.

    • Für die Parallelverschiebung der Hilfsgeraden zeichnet man jeweils einen Strahl, der vom Mittelpunkt des großen Kreises durch den Schnittpunkt der Hilfskreise geht.
    • Diese Strahlen schneiden den großen Kreis in jeweils einem Punkt. Bis zu diesem Punkt werden die Geraden parallelverschoben. So erhält man die gesuchten Tangenten.
    Verschieben wir die Geraden um den Radius des kleinen Kreises nach außen, dann erhalten wir zwei neue Geraden, die die Kreise jeweils in genau einem Punkt berühren und die senkrecht zu den beiden Radien stehen. Und das sind genau die beiden Bedingungen für Tangenten!

  • Erkläre die verschiedenen Schritte beim Konstruieren von Tangenten an zwei Kreisen.

    Tipps

    Um eine Mittelsenkrechte zu konstruieren, muss man zuerst zwei Kreise zeichnen.

    Um eine Parallelverschiebung durchzuführen, muss man wissen, wie weit man die Gerade verschiebt.

    Den Differenzradius kannst du bestimmen, indem du den Zirkel auf den Radius des kleinen Kreises einstellst und vom Rand des großen Kreises diese Distanz abträgst.

    Lösung

    Die jeweilige Erklärung zu jedem Konstruktionsschritt:

    Konstruktion einer Mittelsenkrechten zwischen zwei Punkten:

    Zeichne sich schneidende Kreisbogen mit gleichem Radius um die Punkte und verbinde die Schnittpunkte durch eine Gerade.

    Zeichnen eines Hilfskreises um den Mittelpunkt zwischen zwei Punkten:

    Zeichne einen Kreis um den Mittelpunkt mit dem Abstand zwischen Mittelpunkt und einem der Punkte als Radius.

    Konstruktion eines Hilfskreises mit einem Radius, der die Differenz zwischen dem größeren und dem kleineren Radius der beiden Kreise beträgt:

    Zeichne einen kleinen Hilfskreis um den Mittelpunkt des großen Kreises, indem du den kleinen Radius vom großen Radius abträgst.

    Konstruktion des Punktes, zu dem die Geraden parallel verschoben werden.

    Zeichne Strahle durch den Mittelpunkt des großen Kreises und die Schnittpunkte der Hilfskreise. Diese Strahle schneiden den großen Kreis.

  • Bestimme die korrekten Aussagen zu Tangenten an zwei Kreisen.

    Tipps

    Der Satz des Thales ermöglicht Aussagen zu Dreiecken auf einem Halbkreis.

    Zwei parallele Geraden bilden jeweils den gleichen Winkel mit einer beliebigen anderen Geraden, die die beiden Parallelen schneidet. Hier gilt unter anderem:

    $\beta_1=\beta_2$

    So konstruierst du eine Mittelsenkrechte zwischen zwei Punkten.

    Lösung

    Diese Aussagen sind wahr:

    • Um Tangenten an zwei Kreisen zu konstruieren, muss man zunächst eine Mittelsenkrechte der Verbindung der beiden Kreismittelpunkte konstruieren.
    Mit der Mittelsenkrechten können wir den Mittelpunkt der Verbindungsstrecke der Kreismittelpunkte bestimmen, den wir für das Aufstellen des Satzes des Thales benötigen.
    • Zur Konstruktion einer Mittelsenkrechten der Verbindung zweier Punkte zeichnet man sich schneidende Kreissegmente mit gleichem Radius um die beiden Punkte.
    Zeichnen wir eine Gerade durch diese beiden Schnittpunkte, dann ist diese Gerade genau die Mittelsenkrechte.
    • Man kann auch Tangenten an zwei sich schneidenden Kreisen konstruieren.
    Die Konstruktion von Tangenten ist ebenfalls möglich, wenn sich die Kreise schneiden.

    Diese Aussagen sind falsch:

    • Bei der Konstruktion von Tangenten an zwei Kreisen macht man sich den Satz des Pythagoras zunutze.
    Wir nutzen bei diesem Konstruktionsverfahren den Satz des Thales.
    • Steht eine Gerade senkrecht zum Radius eines Kreises und man führt eine Parallelverschiebung der Geraden durch, dann steht diese verschobene Gerade nicht mehr senkrecht zum Radius des Kreises.
    Eine Parallelverschiebung erhält die Winkelbeziehungen der Geraden zu allen anderen Geraden. Jede Gerade, die zur ursprünglichen Geraden parallel ist, steht also ebenfalls senkrecht auf dem (gegebenenfalls verlängerten) Radius!
  • Erkläre, warum dieses Vorgehen der Konstruktion funktioniert.

    Tipps

    Der Satz des Thales macht Aussagen über rechtwinklige Dreiecke in Halbkreisen.

    Eine Tangente an einem Kreis steht immer senkrecht zum Radius des Kreises.

    Lösung

    Das Vorgehen für die Konstruktion einer Tangenten an zwei Kreisen begründet sich wie folgt:

    • Man betrachtet einen Halbkreis. Aus den Endpunkten des Durchmessers $A$ und $B$ und einem beliebigen weiteren Punkt auf dem Halbkreis $C$ kann man ein Dreieck bilden. Der Satz des Thales besagt, dass dieses Dreieck bei $C$ immer einen rechten Winkel haben muss.
    • Genau das macht man sich bei der Konstruktion von Tangenten an zwei Kreisen zunutze. Auf den ersten Hilfskreis wird der Satz des Thales angewandt.
    • Mit dem Schnittpunkt der beiden Hilfskreise findet man einen Punkt, der auf dem Thaleskreis liegt. Mit diesem Punkt $C$ und den Mittelpunkten der beiden Kreise $A$ und $B$ kann man also ein rechtwinkliges Dreieck bilden. In diesem Dreieck liegt die Verbindung zwischen $B$ und $C$ im rechten Winkel zum Radius des großen Kreises. Das ist wichtig, da Floki eine Tangente konstruieren möchte und diese immer im rechten Winkel zum Radius der Kreise stehen muss.
    • Die Gerade durch $B$ und $C$ muss jetzt nur noch um den Radius des kleinen Kreises nach außen verschoben werden. Dann erfüllt sie beide Bedingungen für Tangenten: Sie liegt senkrecht auf den Radien der beiden gegebenen Kreise und berührt die Kreise in jeweils genau einem Punkt.