Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Gewichte, Längen und Zeiten umrechnen

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 3.9 / 645 Bewertungen
Die Autor*innen
Avatar
Team Digital
Gewichte, Längen und Zeiten umrechnen
lernst du in der 5. Klasse - 6. Klasse

Gewichte, Längen und Zeiten umrechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Gewichte, Längen und Zeiten umrechnen kannst du es wiederholen und üben.
  • Tipps

    Die Grundeinheit für Längen ist ein Meter, abgekürzt: $1~\text{m}$

    Die Abkürzung für ein Milligramm ist $1~\text{mg}$.

    Lösung

    Längenmaße
    Die Grundeinheit für Längen ist ein Meter, abgekürzt $1~\text{m}$. Es gibt außerdem noch größere und kleinere Längenmaße:

    • Kilometer ($\text{km}$)
    • Meter ($\text{m}$)
    • Dezimeter ($\text{dm}$)
    • Zentimeter ($\text{cm}$)
    • Millimeter ($\text{mm}$)
    Massenmaße
    Die Grundeinheit für Massen ist ein Gramm, abgekürzt $1~\text{g}$. Es gibt außerdem noch größere und kleinere Massenmaße:
    • Tonnen ($\text{t}$)
    • Kilogramm ($\text{kg}$)
    • Gramm ($\text{g}$)
    • Milligramm ($\text{mg}$)
    Zeitmaße
    Einheiten für Zeitmaße sind:
    • Jahre
    • Monate
    • Wochen
    • Tage
    • Stunden
    • Minuten
    • Sekunden

  • Tipps

    Um in die nächstkleinere Masseneinheit umzuwandeln, multiplizieren wir mit $1\,000$.

    Lösung

    Um von $\text{kg}$ in $\text{t}$ umzurechnen, müssen wir durch $1\,000$ dividieren:
    $17,\!5~\text{kg}$ = $(17,\!5:1\,000)~\text{t}$ = $0,\!0175~\text{t}$

    Um von $\text{m}$ in $\text{km}$ umzurechnen, müssen wir durch $1\,000$ dividieren:
    $2\,755~\text{m}$ = $(2\,755:1\,000)~\text{km}$ = $2,\!755~\text{km}$

    Um von Minuten in Sekunden umzurechnen, müssen wir mit $60$ multiplizieren:
    $15~\text{min} = (15 \cdot 60)~\text{s} = 900~\text{s}$

    Um von $\text{kg}$ in $\text{g}$ umzurechnen, müssen wir mit $1\,000$ multiplizieren:
    $17,\!5~\text{kg} = (17,\!5 \cdot1\,000)~\text{g}= 17\,500~\text{g}$

  • Tipps

    Beispiel:
    $14,\!8~\text{mg} = 0,\!0148~\text{g}$

    Um Sekunden in Minuten umzurechnen, muss durch $60$ dividiert werden.

    Lösung

    Um von $\text{m}$ in $\text{dm}$ umzurechnen, müssen wir mit $10$ multiplizieren:
    $425~\text{m} = (425 \cdot 10)~\text{dm} = 4\,250~\text{dm}$

    Um von $\text{mg}$ in $\text{g}$ umzurechnen, müssen wir durch $1 000$ dividieren:
    $24,\!1~\text{mg} = (24,\!1 : 1\,000)~\text{g} = 0,\!0241~\text{g}$

    Um von Sekunden in Minuten umzurechnen, müssen wir durch $60$ dividieren:
    $90~\text{s} = (90:60)~\text{min} = 1,\!5~\text{min}$

    Um von $\text{t}$ in $\text{kg}$ umzurechnen, müssen wir mit $1\,000$ multiplizieren:
    $66~\text{t} = (66 \cdot 1\,000)~\text{kg} = 66\,000~\text{kg}$

    Um von $\text{m}$ in $\text{km}$ umzurechnen, müssen wir durch $1\,000$ dividieren:
    $1\,389~\text{m} = (1\,389 : 1\,000)~\text{km} = 1,\!389~\text{km}$

  • Tipps

    Beispiel:
    Ein männlicher Elefant wiegt etwa $6~\text{t}$.

    Lösung

    Ein Lkw darf beladen bis zu $40~\text{t}$ wiegen!

    Eine menschliche Nase ist etwa $5,\!1 - 5,\!8~\text{cm}$ lang!

    Ein Zuckerwürfel wiegt etwa $3~\text{g}$.

    Eine Waldameise wiegt durchschnittlich $10~\text{mg}$.

    Der Turm der Jakobikirche in Lübeck ist etwa $112~\text{m}$ hoch.

  • Tipps

    Das Gewicht eines Elefanten wird in Tonnen angegeben.

    Es gilt: $1\,000~\text{g} = 1~\text{kg}$

    Lösung

    Um in die nächstgrößere Masseneinheit umzurechnen, müssen wir durch $1\,000$ dividieren. Um in die nächstkleinere Masseneinheit umzurechnen, müssen wir mit $1\,000$ multiplizieren.
    Die richtige Reihenfolge lautet also:
    Tonne – Kilogramm – Gramm – Milligramm

    Beispielsweise wird das Gewicht eines Lkws in Tonnen angegeben, das Gewicht eines Menschen in Kilogramm, das Gewicht einer Tafel Schokolade in Gramm und das Gewicht eines Zuckerkorns in Milligramm.

  • Tipps

    Wandle die Angaben alle in die gleiche Einheit um, um sie besser vergleichen zu können.

    $30~\text{dm} = 3~\text{m}$

    Lösung

    Wir wandeln zunächst alle Angaben in $~\text{m}$ um:
    $30~\text{dm} = 3~\text{m}$
    $0,\!014~\text{m}$
    $0,\!178~\text{km}= 178~\text{m}$
    $130~\text{cm} = 13~\text{dm} = 1,\!3~\text{m}$
    $3\,020~\text{m}$
    $150~\text{mm} = 15~\text{cm} = 1,\!5~\text{dm} = 0,\!15~\text{m}$
    Wir sortieren die Längenmaße nun von klein nach groß:
    $0,\!014~\text{m}< 0,\!15~\text{m}< 1,\!3~\text{m}< 3~\text{m}<178~\text{m}<3\,020~\text{m}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

9.360

sofaheld-Level

6.600

vorgefertigte
Vokabeln

8.211

Lernvideos

38.688

Übungen

33.496

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden