Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Zweistufiges Zufallsexperiment mit Zurücklegen

Zweistufige Zufallsexperimente mit Zurücklegen beschäftigen sich beispielsweise mit Spielen wie Schere, Stein, Papier. Ein Beispiel verdeutlicht, wie Wahrscheinlichkeiten durch Baumdiagramme berechnet werden. Mit den Regeln für Wege und Pfade kannst du die Wahrscheinlichkeiten für verschiedene Ereignisse bestimmen. Interessiert? All dies und noch mehr findest du im folgenden Text!

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.4 / 44 Bewertungen
Die Autor*innen
Avatar
Team Digital
Zweistufiges Zufallsexperiment mit Zurücklegen
lernst du in der 5. Klasse - 6. Klasse - 7. Klasse - 8. Klasse - 9. Klasse - 10. Klasse

Zweistufiges Zufallsexperiment mit Zurücklegen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zweistufiges Zufallsexperiment mit Zurücklegen kannst du es wiederholen und üben.
  • Vervollständige das gegebene reduzierte Baumdiagramm.

    Tipps

    Die Wahrscheinlichkeit für „nicht gewonnen“ berechnet Niklas aus den Wahrscheinlichkeiten für „unentschieden“ und „verloren“ mithilfe der zweiten Pfadregel.

    Die zweite Pfadregel besagt, dass die Wahrscheinlichkeit eines Ereignisses gleich der Summe der Wahrscheinlichkeiten aller Pfade ist, die zu diesem Ereignis führen.

    Die Wahrscheinlichkeit des Pfades „gewonnen–gewonnen“ ist das Produkt der Wahrscheinlichkeiten längs des Pfades. Du verwendest also die erste Pfadregel.

    Lösung

    Das Spiel „Schere, Stein, Papier“ fasst Niklas als zweistufiges Zufallsexperiment mit den Ergebnissen „gewonnen“, „verloren“ und „unentschieden“ auf. Zwei Runden „Schere, Stein, Papier“ sind dann ein zweistufiges Zufallsexperiment mit Zurücklegen.

    In einem Baumdiagramm kann Niklas die verschiedenen Spielausgänge von zwei Runden „Schere, Stein, Papier“ veranschaulichen. Jedes der Ergebnisse einer Runde, nämlich „gewonnen“, „verloren“ und „unentschieden“, hat eine Wahrscheinlichkeit von $\frac{1}{3}$.

    Um die Rechnungen zu vereinfachen, verwendet Niklas ein reduziertes Baumdiagramm. Denn ihn interessieren in jeder Runde nur die Ereignisse „gewonnen“ und „nicht gewonnen“. Das Ergebnis „gewonnen“ hat die Wahrscheinlichkeit $\frac{1}{3}$. Diesen Wert trägt Niklas in das reduzierte Baumdiagramm an die jeweils oberen Äste jeder Verzweigung ein.

    Das neue Ergebnis „nicht gewonnen“ im reduzierten Baumdiagramm setzt sich aus den Ergebnissen „verloren“ und „unentschieden“ im ursprünglichen Baumdiagramm zusammen. Nach der zweiten Pfadregel ist die Wahrscheinlichkeit des neuen Ergebnisses „nicht gewonnen“ die Summe der Ergebnisse „verloren“ und „unentschieden“, also:

    $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$

    Diesen Wert trägt Niklas an die jeweils unteren Äste jeder Verzweigung in das Baumdiagramm ein. Das vollständige Baumdiagramm kannst du der Abbildung entnehmen.

    Niklas wird in die Gang aufgenommen, wenn er zwei Runden hintereinander gewinnt. Das Ereignis „Aufnahme in die Gang“ besteht daher genau aus dem Pfad „gewonnen–gewonnen“. Nach der ersten Pfadregel ist die Wahrscheinlichkeit des Pfades das Produkt der Wahrscheinlichkeiten längs des Pfades, also:

    $\frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$

  • Zeige die korrekten Pfadregeln auf.

    Tipps

    Die zweite Pfadregel verwendet Niklas, um die Wahrscheinlichkeit des Ereignisses „nicht gewonnen“ auszurechnen: Diese Wahrscheinlichkeit ist die Summe der Wahrscheinlichkeiten der Ereignisse „verloren“ und „unentschieden“.

    Die Wahrscheinlichkeit eines Pfades ist das Produkt der Einzelwahrscheinlichkeiten längs des Pfades.

    Die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden ist die Summe der Wahrscheinlichkeiten der jeweiligen Pfade.

    Lösung

    Zunächst wiederholen wir die beiden Pfadregeln:

    Erste Pfadregel

    • Die Wahrscheinlichkeit eines Pfades entspricht dem Produkt der Einzelwahrscheinlichkeiten dieses Pfades.
    Zweite Pfadregel

    • Die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden entspricht der Summe der jeweiligen Pfadwahrscheinlichkeiten.

    Nun zu den Aussagen im Einzelnen:

    Falsch sind folgende Aussagen:

    • Die Wahrscheinlichkeit des Pfades „nicht gewonnen–nicht gewonnen“ ist die Summe der Wahrscheinlichkeiten längs des Pfades.
    Nach der ersten Pfadregel ist die Wahrscheinlichkeit das Produkt der Wahrscheinlichkeiten längs des Pfades.
    • Das Ereignis, je eine Runde zu gewinnen und eine nicht zu gewinnen, besteht aus mehreren Pfaden. Die Wahrscheinlichkeit des Ereignisses ist das Produkt der Wahrscheinlichkeiten seiner Pfade.
    Nach der zweiten Pfadregel ist die Wahrscheinlichkeit die Summe der einzelnen Pfadwahrscheinlichkeiten.
    • Die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden ist kleiner als die Wahrscheinlichkeiten der einzelnen Pfade.
    Nach der zweiten Pfadregel ist die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden die Summe der Wahrscheinlichkeiten der Pfade. Sind alle Einzelwahrscheinlichkeiten größer als $0$, so ist die Summe größer als jeder einzelne Summand.
    • Der Pfad „nicht gewonnen–nicht gewonnen“ im reduzierten Baumdiagramm hat die Wahrscheinlichkeit $\frac{4}{9}$. Im nicht reduzierten Baumdiagramm entspricht das einem Ereignis aus vier Pfaden. Nach der zweiten Pfadregel ist die Wahrscheinlichkeit das Produkt der Pfadwahrscheinlichkeiten, also $\frac{1}{4}$.
    Im nicht reduzierten Baumdiagramm besteht das Ereignis tatsächlich aus vier Pfaden und alle Pfade haben dieselbe Wahrscheinlichkeit, nämlich $\frac{1}{9}$. Nach der zweiten Pfadregel ist die Wahrscheinlichkeit des Ereignisses die Summe der Einzelwahrscheinlichkeiten der Pfade. In diesem Falle ist das $\frac{1}{9} + \frac{1}{9} + \frac{1}{9} + \frac{1}{9} = \frac{4}{9}$.

    Richtig sind folgende Aussagen:

    • Die Wahrscheinlichkeit des Ereignisses, eine Runde zu gewinnen und eine nicht zu gewinnen, ist die Summe der Wahrscheinlichkeiten der Pfade „gewonnen–nicht gewonnen“ und „nicht gewonnen–gewonnen“.
    Dies ist eine korrekte Anwendung der zweiten Pfadregel.
    • Längs eines jeden Pfades darf Niklas die Wahrscheinlichkeiten multiplizieren, um die Wahrscheinlichkeit des Pfades auszurechnen.
    Das besagt die erste Pfadregel.
    • Die Wahrscheinlichkeit eines Pfades ist kleiner als die Wahrscheinlichkeiten längs des Pfades.
    Nach der ersten Pfadregel ist die Wahrscheinlichkeit eines Pfades das Produkt der Wahrscheinlichkeiten längs des Pfades. Sind alle vorkommenden Einzelwahrscheinlichkeiten größer als $0$ und kleiner als $1$, so ist das Produkt der Einzelwahrscheinlichkeiten kleiner als die Einzelwahrscheinlichkeiten selbst.
  • Bilde korrekte Aussagen über die Wahrscheinlichkeiten.

    Tipps

    Die Summe der Wahrscheinlichkeiten aller Pfade ist $1$.

    Die Wahrscheinlichkeit eines Pfades ist nicht die Summe der Einzelwahrscheinlichkeiten längs des Pfades.

    Wahrscheinlichkeiten werden kleiner, wenn man sie multipliziert.

    Lösung

    Die erste Pfadregel besagt:

    • Die Wahrscheinlichkeit eines Pfades entspricht dem Produkt der Einzelwahrscheinlichkeiten längs dieses Pfades.

    Die zweite Pfadregel lautet:

    • Die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden entspricht der Summe der jeweiligen Pfadwahrscheinlichkeiten.

    Mittels der Pfadregeln finden wir folgende korrekten Aussagen:

    • Ein Ereignis aus drei Pfaden der Wahrscheinlichkeit $\frac{1}{4}$ hat die Wahrscheinlichkeit $\frac{3}{4}$.
    Es handelt sich um eine korrekte Anwendung der zweiten Pfadregel.
    • Ein Pfad aus zwei Abschnitten mit den Einzelwahrscheinlichkeiten $\frac{1}{2}$ und $\frac{1}{3}$ hat die Wahrscheinlichkeit $\frac{1}{6}$.
    Hier wurde die erste Pfadregel korrekt verwendet.
    • Die Wahrscheinlichkeit eines Pfades ist kleiner als die Einzelwahrscheinlichkeiten längs des Pfades.
    Nach der ersten Pfadregel ist die Wahrscheinlichkeit des Pfades das Produkt der Wahrscheinlichkeiten längs des Pfades. Das Produkt ist kleiner als die Faktoren, da die Einzelwahrscheinlichkeiten kleiner als $1$ sind.
    • Die Wahrscheinlichkeit eines Ereignisses aus mehreren Pfaden ist größer als die Wahrscheinlichkeiten seiner Pfade.
    Nach der zweiten Pfadregel ist die Wahrscheinlichkeit eines solchen Ereignisses die Summe seiner Pfadwahrscheinlichkeiten. Die Summe ist größer als die einzelnen Summanden, da jeder Summand größer als $0$ ist.
    • Ein Ereignis aus vier Pfaden der Wahrscheinlichkeit $\frac{1}{3}$ gibt es nicht.
    Nach der zweiten Pfadregel wäre die Wahrscheinlichkeit eines solchen Ereignisses $\frac{4}{3} > 1$. Das ist unmöglich.
  • Anaysiere das zweistufige Zufallsexperiment.

    Tipps

    Eine Runde „Schere, Stein, Papier“ geht unentschieden aus, wenn beide Spieler dasselbe Ergebnis gewählt haben.

    Bei dem Spiel gewinnt „Schere“ gegen „Papier“, „Papier“ gegen „Stein“ und „Stein“ gegen „Schere“.

    Die Wahrscheinlichkeit eines Pfades mit Einzelwahrscheinlichkeiten $\frac{1}{4}$ und $\frac{1}{5}$ längs des Pfades beträgt $\frac{1}{20}$.

    Lösung

    In dem neuen Baumdiagramm sieht Niklas alle möglichen Ausgänge des zweistufigen Experiments „Schere, Stein, Papier“. Die erste Stufe entspricht Niklas, die zweite seinem Gegner.

    Niklas fasst die Pfade zu den Ereignissen „gewonnen“, „verloren“ und „unentschieden“ zusammen. Jedes Ereignis besteht aus drei Pfaden. Da alle Pfade dieselbe Wahrscheinlichkeit haben, müssen auch die Ereignisse jeweils dieselbe Wahrscheinlichkeit haben, nämlich $\frac{1}{3}$.

    Machen wir uns am Baumdiagramm klar, wie das zustande kommt: Das Ereignis „unentschieden“ besteht aus den Pfaden „Schere–Schere“, „Stein–Stein“ und „Papier–Papier“. Denn unentschieden ist eine Runde „Schere, Stein, Papier“, wenn beide Spieler dasselbe Ergebnis gewählt haben.

    Das Ereignis „gewonnen“ besteht aus den Pfaden „Schere–Papier“, „Papier–Stein“ und „Stein–Schere“. Denn die Schere schneidet Papier, das Papier wickelt den Stein ein und der Stein macht die Schere stumpf.

    Das Ereignis „verloren“ besteht schließlich aus den Pfaden „Schere–Stein“, „Stein–Papier“ und „Papier–Schere“. Denn das erste Wort steht immer für Niklas’ Wahl.

    Jedes Ergebnis des einstufigen Experiments „Schere, Stein, Papier“ hat dieselbe Wahrscheinlichkeit, nämlich $\frac{1}{3}$. Die Ergebnisse des zweistufigen Experiments entsprechen den Pfaden im Baumdiagramm. Nach der ersten Pfadregel ist die Wahrscheinlichkeit eines Pfades das Produkt der Einzelwahrscheinlichkeiten längs des Pfades. Im Fall von „Schere, Stein, Papier“ hat jeder einzelne Pfad die folgende Wahrscheinlichkeit:

    $\frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$

    Jedes der Ereignisse „gewonnen“, „verloren“ und „unentschieden“ besteht aus drei Pfaden. Nach der zweiten Pfadregel ist die Wahrscheinlichkeit des Ereignisses die Summe der Wahrscheinlichkeiten seiner Pfade. Da jeder einzelne Pfad in dem Baumdiagramm die Wahrscheinlichkeit $\frac{1}{9}$ hat, kommt Niklas für jedes der Ereignisse „gewonnen“, „verloren“ und „unentschieden“ auf folgende Wahrscheinlichkeit:

    • $\frac{1}{9} + \frac{1}{9} + \frac{1}{9} + = \frac{1}{3}$
  • Bestimme die Wahrscheinlichkeit für das Ereignis „Hundekuss“.

    Tipps

    Eine Runde „Schere, Stein, Papier“ mit den möglichen Ergebissen „gewonnen“, „verloren“ und „unentschieden“ entspricht im Urnenmodell dem einmaligen Ziehen aus einer Urne mit drei unterschiedlichen Kugeln.

    Im Baumdiagramm werden die Wahrscheinlichkeiten längs der Pfade multipliziert und die Wahrscheinlichkeiten verschiedener Pfade addiert.

    Lösung

    Niklas fasst das Spiel „Schere, Stein, Papier“ als zweistufiges Zufallsexperiment mit Zurücklegen auf. Die Ergebnisse sind „verloren“, „gewonnen“ und „unentschieden“. Alle Ergebnisse haben dieselbe Wahrscheinlichkeit, nämlich $\frac{1}{3}$.

    Nun fasst Niklas die Ergebnisse „verloren“ und „unentschieden“ zu dem Ereignis „nicht gewonnen“ zusammen. Nach der zweiten Pfadregel, angewendet auf das nicht reduzierte Baumdiagramm, hat „nicht gewonnen“ die Wahrscheinlichkeit $\frac{1}{3} + \frac{1}{3} = \frac{2}{3}$. Die Äste im reduzierten Baumdiagramm entsprechen den Ereignissen „gewonnen“ mit der Wahrscheinlichkeit $\frac{1}{3}$ und „nicht gewonnen“ mit der Wahrscheinlichkeit $\frac{2}{3}$. Die Wahrscheinlichkeiten der Äste sind also verschieden.

    Das Ereignis „Hundekuss“ besteht aus zwei Pfaden derselben Wahrscheinlichkeit. Die Wahrscheinlichkeit eines Pfades berechnet Niklas mit der ersten Pfadregel. Dazu multipliziert er die Wahrscheinlichkeiten längs des Pfades und kommt für jeden der beiden Pfade „gewonnen–nicht gewonnen“ und „nicht gewonnen–gewonnen“ auf:

    $\frac{1}{3} \cdot \frac{2}{3} = \frac{2}{9}$

    Aus diesen Pfadwahrscheinlichkeiten berechnet Niklas die Wahrscheinlichkeit des Ereignisses „Hundekuss“ mittels der zweiten Pfadregel, indem er die Pfadwahrscheinlichkeiten addiert.

    Der „Hundekuss“ hat also folgende Wahrscheinlichkeit:

    $\frac{2}{9} + \frac{2}{9} = \frac{4}{9}$

  • Analysiere die Zufallsexperimente.

    Tipps

    Überlege, wie das Baumdiagramm für die Kinokartenverlosung aussieht.

    Übersetze die Zufallsexperimente ins Urnenmodell, um die Wahrscheinlichkeiten auszurechnen.

    Lösung

    Alle hier beschriebenen Situationen können als mehrstufige Zufallsexperimente aufgefasst werden. Dabei kommen sowohl Zufallsexperimente mit Zurücklegen als auch ohne Zurücklegen vor.

    Richtig beschrieben sind folgende Szenarien:

    • Die Ringe in Niklas’ Fahrradschloss sind unabhängig voneinander, jede Ziffer kann in dem nächsten Ring erneut vorkommen. Die Wahrscheinlichkeit, die Zahlenkombination mit einem Versuch richtig zu erraten, ist die Wahrscheinlichkeit eines Pfades in einem dreistufigen Baumdiagramm. An jeder Verzweigung hat das Baumdiagramm $10$ Äste. Auf der ersten Stufe sind es also $10$ Äste, auf der zweiten $100$ Äste und auf der dritten Stufe $1 000$ Äste. Die Einzelwahrscheinlichkeit längs jedes Pfades beträgt jeweils $\frac{1}{10}$.
    Nach der ersten Pfadregel beträgt die Wahrscheinlichkeit jedes Pfades daher:

    $\frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{1 000}$

    • Die Wahl einer Zeile und Spalte des Schachbretts ist ein zweistufiges Zufallsexperiment mit Zurücklegen. Nummeriert man die Zeilen und Spalten von $1$ bis $8$, so handelt es sich im Urnenmodell um zweimaliges Ziehen mit Zurücklegen aus $8$ Kugeln. Die Wahrscheinlichkeit, das Schachbrettfeld korrekt vorherzusagen, ist nach der ersten Pfadregel $\frac{1}{8} \cdot \frac{1}{8} = \frac{1}{64}$.
    Falsch beschrieben sind folgende Szenarien:

    • Die Auslosung von zwei Kinogängern aus vier Gangmitgliedern ist ein Beispiel für Ziehen ohne Zurücklegen. Denn wer im ersten Losgang bereits eine Kinokarte bekommen hat, wird im zweiten Gang nicht mehr berücksichtigt – schließlich geht niemand mit sich selbst zu zweit ins Kino. Für das Ziehen ohne Zurücklegen gelten andere Formeln als die hier verwendeten, daher ist die Aussage falsch.
    • Das Ziehen von zwei Karten aus dem Skatblatt ist ebenfalls ein Beispiel für Ziehen ohne Zurücklegen. Dafür gelten andere Formeln als die hier verwendeten. Deshalb ist die Aussage falsch.