30 Tage kostenlos testen:
Mehr Spaß am Lernen.

Überzeugen Sie sich von der Qualität unserer Inhalte.

Jetzt Teil der Test-Community werden und tolle Dankeschöns kassieren!

Zweistufige Zufallsexperimente mit Zurücklegen und mit Beachtung der Reihenfolge 06:31 min

Textversion des Videos

Transkript Zweistufige Zufallsexperimente mit Zurücklegen und mit Beachtung der Reihenfolge

Kunibert steht vor seiner letzten Ritterprüfung. Nämlich am Anfang des Labyrinths, durch das er seinen Weg finden muss. Hier ist ein Plan des Labyrinths. Die beiden äußersten Pfade enden direkt im Wassergraben. Dieser Pfad hier treibt Kunibert genau dem schwarzen Ritter in die Arme. Nur am Ende dieses Pfades wartet Kuniberts Ritterschlag auf ihn. Leider hat Kunibert keinerlei Ahnung, wo er entlang gehen soll. Also entscheidet er an jeder Abzweigung zufällig, ob er links oder rechts abbiegen soll. Ob er es schafft? Die Wahrscheinlichkeit dafür können wir ausrechnen – es handelt sich nämlich um ein zweistufiges Zufallsexperiment mit Zurücklegen und mit Beachtung der Reihenfolge. Aber wieso genau so ein Zufallsexperiment? Zweistufig ist es deshalb, weil Kunibert zweimal abbiegen muss. Und weil er jedesmal wieder nur nach links oder nach rechts gehen kann, ist es mit Zurücklegen. Das bedeutet nämlich, dass ihm in jeder Stufe des Experiments die gleichen Optionen zur Verfügung stehen. Die Reihenfolge spielt dabei eine Rolle, weil es einen großen Unterschied macht, ob Kunibert zuerst rechts und dann links abbiegt oder zuerst links und dann rechts. Also: zweistufig – mit Zurücklegen – mit Beachtung der Reihenfolge. Solche mehrstufigen Zufallsversuche stellt man am besten in einem Baumdiagramm dar. Dafür zeichnest du vom Anfang ausgehend Knoten, die für die jeweiligen Ergebnisse stehen, und verbindest sie so mit Ästen. In unserem Fall entsprechen die Knoten jeweils den Entscheidungen, rechts oder links zu gehen – also beschriften wir sie mit "R" oder "L". Sowohl in der ersten als auch in der zweiten Stufe gibt es jeweils diese beiden Möglichkeiten – wir ziehen ja mit Zurücklegen. An die Äste schreiben wir die jeweiligen Wahrscheinlichkeiten. Da Kunibert sich immer ganz zufällig für eine Richtung entscheidet, ist die Wahrscheinlichkeit jeweils 50%, also 1/2. Da es ein Zufallsexperiment mit Zurücklegen ist, sind die Wahrscheinlichkeiten in der ersten Stufe die gleichen wie in der zweiten. Dann berechnen wir doch mal die Wahrscheinlichkeit, dass Kunibert den richtigen Pfad nimmt. Dazu muss er zuerst links abbiegen, dann rechts. Denk dran, dass die Reihenfolge eine Rolle spielt. Wir bezeichnen diese Wahrscheinlichkeit als 'P von L, R'. Um sie auszurechnen, können wir die erste Pfadregel benutzen: die Wahrscheinlichkeit eines Pfades entspricht dem Produkt aller Wahrscheinlichkeiten entlang dieses Pfades. Die lauten hier jeweils ein Halb, also ist die Pfadwahrscheinlichkeit gleich ein Halb mal ein Halb – das ist ein Viertel. Gar nicht so wahrscheinlich. Wie groß ist denn die Chance, dass Kunibert dem schwarzen Ritter zum Opfer fällt? Dafür muss er zuerst rechts, dann links abbiegen – also entspricht das der Wahrscheinlichkeit 'P von R, L'. Wir benutzen wieder die erste Pfadregel – die Wahrscheinlichkeit des gesamten Pfades ist das Produkt der Wahrscheinlichkeiten entlang des Pfades. Die lauten wieder jeweils ein Halb, also ist auch hier die Wahrscheinlichkeit gleich ein Viertel. Nun ja, und wie wahrscheinlich ist es, dass Kunibert bei seinem zufälligen Wandern durch das Labyrinth im Wassergraben landet? Zu diesem Ereignis gehören die beiden äußeren Pfade, also "links, links" und "rechts, rechts". Die Wahrscheinlichkeit jedes einzelnen dieser Pfade können wir wieder mit der 1. Pfadregel ausrechnen. Bei beiden Pfaden ist die Wahrscheinlichkeit jeweils wieder gleich ein Halb mal ein Halb, also ein Viertel. Aber wie berechnen wir nun die Gesamtwahrscheinlichkeit dafür, dass Kunibert in den Wassergraben fällt? Dafür brauchen wir die zweite Pfadregel. Die besagt, dass die Wahrscheinlichkeit eines Ereignisses, das aus mehreren Pfaden besteht, gleich der Summe der Wahrscheinlichkeiten der einzelnen Pfade ist. Bei uns sind das die beiden Pfade "links, links" und "rechts, rechts", die jeweils eine Wahrscheinlichkeit von einem Viertel haben. Demnach ist die Wahrscheinlichkeit, in den Wassergraben zu fallen, gleich ein Viertel plus ein Viertel – also ein Halb. Naja, lieber nass werden, als dem schwarzen Ritter zu begegnen! Kunibert macht sich auf, und wir fassen rasch zusammen.Ein zweistufiges Zufallsexperiment mit Beachtung der Reihenfolge und mit Zurücklegen könnte zum Beispiel ein zweimaliges Würfeln sein, oder das zweimalige Ziehen von Kugeln aus einer Urne, die jeweils wieder zurückgelegt werden. Am besten stellt man mehrstufige Zufallsversuche in einem Baumdiagramm dar. Dafür zeichnet man einen Knoten für jedes Ergebnis und schreibt die entsprechenden Wahrscheinlichkeiten an die Äste. Beim Ziehen mit Zurücklegen ändern sich die Wahrscheinlichkeiten zwischen dem ersten und zweiten Zug nicht. Die Wahrscheinlichkeit eines Pfades berechnest du mit der ersten Pfadregel als das Produkt der Wahrscheinlichkeiten entlang des Pfades. Führen mehrere Pfade zum gesuchten Ergebnis, addierst du mit der 2. Pfadregel die einzelnen Pfadwahrscheinlichkeiten. Kunibert hatte wohl Glück – er ist weder dem schwarzen Ritter noch dem Wassergraben begegnet und freut sich schon auf seinen Ritterschlag. Doch wer erwartet ihn denn hier? Der Schwertschlucker des Königs? Dann vielleicht doch lieber der Wassergraben!

Zweistufige Zufallsexperimente mit Zurücklegen und mit Beachtung der Reihenfolge Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Zweistufige Zufallsexperimente mit Zurücklegen und mit Beachtung der Reihenfolge kannst du es wiederholen und üben.

  • Bestimme die korrekten Aussagen zu Zufallsexperimenten.

    Tipps

    Die Bezeichnung „mit Zurücklegen“ kommt aus dem Urnenmodell, in dem man Kugeln in einer Urne betrachtet. Legt man diese nach dem Ziehen zurück, hat man in jeder Stufe die gleichen Optionen mit den gleichen Wahrscheinlichkeiten zur Verfügung.

    Baumdiagramme sind beim Bestimmen von Wahrscheinlichkeiten sehr hilfreich. Bevor du bei Zufallsexperimenten beginnst zu rechnen, solltest du dir immer ein Baumdiagramm zeichnen.

    Lösung

    Diese Aussagen sind falsch:

    • Mit Zurücklegen bedeutet, dass in jeder Stufe des Experiments unterschiedliche Optionen zur Verfügung stehen.
    Bei Zufallsexperimenten mit Zurücklegen hast du in jeder Stufe des Experiments die gleichen Optionen mit den gleichen Wahrscheinlichkeiten zur Verfügung. Die Bezeichnung „mit Zurücklegen“ kommt aus dem Urnenmodell, in dem man Kugeln in einer Urne betrachtet. Legt man diese nach dem Ziehen zurück, hat man in jeder Stufe die gleichen Optionen mit den gleichen Wahrscheinlichkeiten zur Verfügung.

    • Zweimaliges Würfeln ist ein zweistufiges Zufallsexperiment ohne Zurücklegen.
    Beim zweimaligen Würfeln hat man in beiden Stufen die gleichen Optionen mit den gleichen Wahrscheinlichkeiten zur Verfügung. Es ist also ein zweistufiges Zufallsexperiment mit Zurücklegen.

    Diese Aussagen sind richtig:

    • Zweistufig bedeutet, dass im Experiment genau zwei zufällige Entscheidungen getroffen werden.
    • Ein Baumdiagramm hilft bei der übersichtlichen Darstellung von mehrstufigen Zufallsexperimenten.
    Baumdiagramme sind beim Bestimmen von Wahrscheinlichkeiten sehr hilfreich. Bevor du bei mehrstufigen Zufallsexperimenten beginnst zu rechnen, solltest du dir immer ein Baumdiagramm zeichnen.

    • Bei Zufallsexperimenten mit Zurücklegen bleibt die Wahrscheinlichkeit für ein Ereignis in jeder Stufe gleich.
  • Bestimme die korrekten Aussagen zu Baumdiagrammen.

    Tipps

    Jeder Pfad hat eine Pfadwahrscheinlichkeit, die man aus allen Wahrscheinlichkeiten entlang dieses Pfades berechnet.

    Die zweite Pfadregel wird zum Bestimmen der Gesamtwahrscheinlichkeit mehrerer Pfade genutzt. Sie besagt, dass man die Wahrscheinlichkeiten der einzelnen Pfade addieren muss.

    Lösung

    Diese Aussagen sind wahr:

    • Möchte man die Wahrscheinlichkeit eines Pfades berechnen, muss man die Wahrscheinlichkeiten der Ereignisse entlang des Pfades multiplizieren.
    • Die Pfadwahrscheinlichkeit berechnet sich aus den einzelnen Wahrscheinlichkeiten der gewählten Abzweigungen an den Knoten des Pfades.
    Um die Wahrscheinlichkeit eines Pfades (oder Pfadwahrscheinlichkeit) zu bestimmen, nutzt man die erste Pfadregel. Diese besagt, dass man die Wahrscheinlichkeiten entlang des Pfades multiplizieren muss.

    • Um die gesamte Wahrscheinlichkeit mehrerer Pfade zu bestimmen, muss man die Wahrscheinlichkeiten der einzelnen Pfade addieren.
    Die zweite Pfadregel wird zum Bestimmen der Gesamtwahrscheinlichkeit mehrerer Pfade genutzt. Sie besagt, dass man die Wahrscheinlichkeiten der einzelnen Pfade addieren muss.

    Diese Aussagen sind falsch:

    • Möchte man die Wahrscheinlichkeit eines Pfades berechnen, muss man die Wahrscheinlichkeiten der Ereignisse entlang des Pfades addieren.
    • In einem Baumdiagramm zeichnet man Pfade, die mehrere Pfadwahrscheinlichkeiten besitzen.
    Jeder Pfad hat nur eine Pfadwahrscheinlichkeit, die sich aus den Wahrscheinlichkeiten entlang dieses Pfades berechnet.

  • Bestimme die Wahrscheinlichkeit.

    Tipps

    Die Wahrscheinlichkeiten der Entscheidungen entlang des Pfades kannst du dem Baumdiagramm entnehmen.

    Hier handelt es sich um ein Zufallsexperiment mit Zurücklegen. Das bedeutet, dass du in jeder Stufe die gleichen Optionen mit den gleichen Wahrscheinlichkeiten zur Verfügung hast.

    Lösung

    Die Gesamtwahrscheinlichkeit, im Wassergraben zu landen, berechnet sich durch:

    • Der Pfad $P(\text{L},\text{L})$ führt zum Wassergraben. Die Wahrscheinlichkeit für diesen Pfad lässt sich mit der ersten Pfadregel berechnen. Diese besagt, dass man die Wahrscheinlichkeiten entlang des Pfades multiplizieren muss, um die Pfadwahrscheinlichkeit zu bestimmen.
    • Da er sich an jeder Kreuzung zufällig für einen der beiden Wege entscheidet, ist die Wahrscheinlichkeit, bei der ersten Kreuzung nach links zu gehen, $\frac{1}{2}$. Bei der zweiten Kreuzung entscheidet er sich ebenfalls zufällig. Die Wahrscheinlichkeit ist also wieder $\frac{1}{2}$.
    Die Wahrscheinlichkeiten der Entscheidungen entlang des Pfades kannst du auch dem Baumdiagramm entnehmen. Außerdem handelt es sich hier um ein Zufallsexperiment mit Zurücklegen. Das bedeutet, dass man in jeder Stufe die gleichen Optionen mit den gleichen Wahrscheinlichkeiten zur Verfügung hat.

    • Die Wahrscheinlichkeit, dass Kunibert zweimal nach links geht, kann man also bestimmen durch:
    • $P(\text{L},\text{L})=\frac{1}{2} \cdot \frac{1}{2} =\frac{1}{4}$.
    • Biegt er zweimal rechts ab, landet er ebenfalls im Wasser. Die Wahrscheinlichkeit dieses Pfades kann man mit $P(\text{R},\text{R})$ bezeichnen und berechnet sich analog.
    • $P(\text{R},\text{R})=\frac{1}{2} \cdot \frac{1}{2} =\frac{1}{4}$
    • Um die Gesamtwahrscheinlichkeit $P(\text{W})$ zu berechnen, verwendet man die zweite Pfadregel. Diese besagt, dass man die Wahrscheinlichkeiten der einzelnen Pfade addieren muss. Es ergibt sich also:
    • $P(\text{W})=P(\text{R},\text{R})+P(\text{L},\text{L})=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$.
  • Bestimme eine Wahrscheinlichkeit mit dem Gegenereignis.

    Tipps

    Das Baumdiagramm dieses Zufallsexperiments sieht so aus.

    Lösung

    Der Lückentext wird so ausgefüllt:

    Um die Wahrscheinlichkeit $P(\text{A})$ zu bestimmen, muss sie drei Pfade addieren. Auf dem ersten Pfad $P(\text{R},\text{G})$ zieht Sabine zuerst eine rote und dann eine grüne Kugel. Auf dem zweiten Pfad $P(\text{G},\text{R})$ zieht sie zuerst eine grüne und anschließend eine rote Kugel und auf dem dritten Pfad $P(\text{R},\text{R})$ zwei rote. Die Wahrscheinlichkeiten diese Pfade berechnet sie mit der ersten Pfadregel zu:

    • $P(\text{G},\text{R})=\frac{21}{100}$
    • $P(\text{R},\text{R})=\frac{9}{100}$
    Nach der ersten Pfadregel musst du alle Wahrscheinlichkeiten entlang des Pfades multiplizieren, um die Pfadwahrscheinlichkeit zu erhalten.

    Mit der zweiten Pfadregel bestimmt sie die Gesamtwahrscheinlichkeit.

    • $P(\text{A})=P(\text{R},\text{G})+P(\text{G},\text{R})+P(\text{R},\text{R})=\frac{21}{100}+\frac{21}{100}+\frac{9}{100}=\frac{51}{100}$
    In der Schule hat Sabine gelernt, dass die Gesamtwahrscheinlichkeit aller Pfade eins ergeben muss.

    • $P(\text{G},\text{G})+P(\text{R},\text{G})+P(\text{G},\text{R})+P(\text{R},\text{R})=1$
    Oder umgeformt:

    • $P(\text{R},\text{G})+P(\text{G},\text{R})+P(\text{R},\text{R})=1-P(\text{G},\text{G})$

    In der Wahrscheinlichkeitsrechnung gilt:

    • $P(\text{A})=1-P(\bar{\text{A}})$.
    Das bedeutet: Die Wahrscheinlichkeit des Ereignisses $\text{A}$ ist gleich eins minus der Wahrscheinlichkeit des Gegenereignisses $\bar{\text{A}}$. Das Gegenereignis $\bar{\text{A}}$ enthält dabei alle Ereignisse, die nicht in $\text{A}$ enthalten sind.

    Die rechte Seite der Gleichung ergibt:

    • $P(\text{A})=1-P(\text{G},\text{G})=1-\frac{49}{100}= \frac{51}{100}$.
    Man nennt diese Art der Rechnung auch Rechnen mit der Gegenwahrscheinlichkeit. Sie ist hilfreich, wenn man die Wahrscheinlichkeit für ein Ereignis berechnen will, zu dem mehr als die Hälfte der Pfade gehören.

  • Ermittle die gesuchte Wahrscheinlichkeit.

    Tipps

    Dies ist ein Zufallsexperiment mit Zurücklegen. Bei jedem Wurf ist also die Wahrscheinlichkeit für die Ergebnisse Kopf oder Zahl gleich.

    Da die Wahrscheinlichkeit für beide Alternativen genau gleich ist, ergibt sich für beide Pfade die gleiche Wahrscheinlichkeit.

    Das Baumdiagramm für dieses Zufallsexperiment sieht so aus.

    Lösung

    Die Wahrscheinlichkeit berechnet sich folgendermaßen.

    Es gibt zwei Pfade, in denen je einmal Kopf und einmal Zahl geworfen wird. Es kann zum Beispiel zuerst Kopf und dann Zahl fallen. Die Wahrscheinlichkeit dieses Pfades beträgt:

    • $P(\text{K},\text{Z})=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.
    Da es sich hierbei um ein Zufallsexperiment mit Zurücklegen handelt, ist bei jedem Wurf die Wahrscheinlichkeit für das Ergebnis Kopf oder Zahl gleich. Im anderen Pfad fällt zuerst Zahl und anschließend Kopf. Die Wahrscheinlichkeit dieses Pfades berechnet sich zu:
    • $P(\text{Z},\text{K})=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4}$.
    Die Gesamtwahrscheinlichkeit erhalten wir, indem wir die Wahrscheinlichkeiten der beiden Pfade addieren:
    • $P(\text{Gesamt})=\frac{1}{4} +\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$.
    Gesamtwahrscheinlichkeiten berechnest du mit der zweiten Pfadregel. Diese besagt, dass du die Wahrscheinlichkeiten der einzelnen Pfade addieren musst, um die Gesamtwahrscheinlichkeit zu erhalten.

  • Bestimme die Wahrscheinlichkeiten.

    Tipps

    Die Wahrscheinlichkeit eines Ereignisses kannst du mit der ersten Pfadregel bestimmen. Die besagt, dass du alle Wahrscheinlichkeiten entlang des Pfades multiplizieren musst.

    So sieht das Baumdiagramm für dieses Zufallsexperiment aus.

    Nachdem du die Wahrscheinlichkeit eines Ereignisses berechnet hast, musst du den Bruch, falls möglich, kürzen. Zum Beispiel:

    $\frac{24}{144}=\frac{2}{12}=\frac{1}{6}$

    Lösung

    Um die Wahrscheinlichkeiten der Pfade zu bestimmen, solltest du zuerst ein Baumdiagramm zeichnen. Daraus kannst du die Wahrscheinlichkeiten der Pfade berechnen. Die erste Wahrscheinlichkeit $P(\text{R},\text{G})$ berechnet sich folgendermaßen:

    $P(\text{R},\text{G})=\frac{3}{12} \cdot \frac{4}{12}=\frac{12}{144}=\frac{1}{12}$

    $P(\text{B},\text{R})+P(\text{R},\text{B})$ berechnet sich aus der Summe von $P(\text{B},\text{R})$ und $P(\text{R},\text{B})$.

    $P(\text{B},\text{R})+P(\text{R},\text{B})= \frac{15}{144}+\frac{15}{144}=\frac{30}{144}=\frac{5}{24}$

    Die Wahrscheinlichkeiten der anderen Pfade kannst du genauso bestimmen. Damit folgt:

    • $P(\text{R},\text{G})=\frac{1}{12}$
    • $P(\text{R},\text{R})= \frac{1}{16}$
    • $P(\text{B},\text{B})= \frac{25}{144}$
    • $P(\text{B},\text{R})+P(\text{R},\text{B})= \frac{5}{24}$