Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Messen und Zeichnen von Winkeln

Winkel messen bedeutet, die Gradzahl zwischen zwei Halbgeraden zu bestimmen. Mit einem Geodreieck misst man und liest gegen den Uhrzeigersinn ab. Man kann auch Winkel zeichnen, indem man das Geodreieck an die Linie anlegt und die Gradzahl markiert. Interessiert? Das und Übungen findest du im Text!

Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Alle Inhalte sind von Lehrkräften & Lernexperten erstellt
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.2 / 970 Bewertungen
Die Autor*innen
Avatar
Team Digital
Messen und Zeichnen von Winkeln
lernst du in der 5. Klasse - 6. Klasse

Messen und Zeichnen von Winkeln Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Messen und Zeichnen von Winkeln kannst du es wiederholen und üben.
  • Gib an, wie du einen Winkel messen kannst.

    Tipps

    Hier messen wir einen Winkel von $40^\circ$.

    Der wichtigste Vorteil bei einem Geodreieck sind die beiden Halbkreise mit den Skalen, die uns beim Ermitteln der Winkelgröße helfen.

    Der Punkt $S$ markiert hier den Scheitel des Winkels $\alpha$.

    Lösung

    Diese Schritte solltest du beim Messen von Winkeln immer beachten:

    1. Zuerst suchst du dir dein Geodreieck. Dieses hat eine Linealkante, mit der du Längen messen kannst. Viel wichtiger ist aber der meist farblich markierte Bogen: Die Skala auf diesem Bogen gibt die Winkelgröße in Grad an.
    2. Zum Messen legst du das Geodreieck so mit der Linealkante an einen der Schenkel an, dass sich der Winkelscheitel genau bei der Null auf dem Lineal befindet. Der zweite Schenkel muss dabei unter dem Geodreieck liegen. Je nachdem, an welchen Schenkel du das Geodreieck anlegst, musst du die innere oder äußere Skala des Bogens betrachten. Merke dir, dass du immer die Skala nimmst, die dort mit der $0$ beginnt, wo dein Schenkel anliegt.
    3. Am anderen Scheitel kannst du nun erkennen, wie groß der Winkel ist. Hier sehen wir, dass die Größe des Winkels $50^\circ$ beträgt. Dies kannst du dann einfach ablesen.
  • Erkläre, wie du Winkel zeichnen kannst.

    Tipps

    Ein Winkel wird immer von $2$ Schenkeln eingeschlossen.

    Der Bogen auf deinem Geodreieck ist in $180$ Abschnitte mit jeweils $1^\circ$ eingeteilt.

    Lösung

    Die Ameisenarchitektin Antonia soll eine Brücke mit mehreren Tragseilen konstruieren, die jeweils an der Spitze der Pflanze befestigt werden. Die Spitze wird also unser Scheitel aller Winkel. Damit die Brücke stabil ist, müssen die Winkel zwischen den Tragseilen genau richtig gezeichnet sein. Zwischen dem hier gelb eingezeichneten Tragseilende und dem dazugehörigen auf der anderen Seite soll ein Winkel der Größe $65^\circ$ liegen.

    Dazu legt Antonia ein Geodreieck mit der Linealkante an den Schenkel an. Dabei muss sie beachten, dass der Scheitel genau bei der $0$ liegt, sonst bekommt man ein falsches Ergebnis.

    Dann misst sie mithilfe der Skala auf dem Kreisbogen genau $65^\circ$ ab und markiert die Stelle mit einem Punkt. Hierbei ist es wichtig, zu beachten, dass es zwei unterschiedliche Skalen gibt. Man nimmt immer die, bei der der Scheitel bei $0^\circ$ anliegt.

    Danach zeichnet sie eine Linie durch den Scheitel und diese Markierung, um das andere Tragseilende zu erhalten. Dies ist dann der zweite Schenkel des Winkels.

  • Bestimme die Größen der folgenden Winkel.

    Tipps

    Für einen überstumpfen Winkel reicht dein Geodreieck nicht aus, da du nur Winkel bis zu einer Größe von $180^\circ$ messen kannst. Hier zeichnest du zunächst einen gestreckten Winkel ($180^\circ$) ein, misst dann den restlichen Winkel und addierst beide Werte.

    Lösung

    Wir messen zunächst die beiden einfacheren spitzen Winkel, da wir diese direkt am Geodreieck ablesen können. Das Geodreieck liegt am unteren Schenkel an, also brauchen wir die Skala, die dort bei $0$ anfängt. Das ist die obere auf dem Kreisbogen, somit gelten folgende Größen:

    • 1. Bild: $60^\circ$
    • 3. Bild: $85^\circ$
    Für einen überstumpfen Winkel reicht dein Geodreieck nicht aus, da du nur Winkel bis zu einer Größe von $180^\circ$ messen kannst. Hier zeichnest du zunächst einen gestreckten Winkel ($180^\circ$) ein, misst dann den restlichen Winkel und addierst beide Werte.

    Somit gelten folgende Größen:

    • 2. Bild: $180^\circ+30^\circ=210^\circ$
    • 4. Bild: $180^\circ+45^\circ=225^\circ$
  • Entscheide, welche Winkel entsprechend der Angabe korrekt gezeichnet wurden.

    Tipps

    Dieser Winkel ist korrekt gezeichnet. Er setzt sich aus einem gestreckten Winkel ($180^\circ$) und einem stumpfen Winkel der Größe $135^\circ$ zusammen und hat somit eine Größe von $315^\circ$.

    Lösung

    Korrekt gezeichnet wurden die folgenden Winkel:

    • $\alpha=260^\circ$
    Wir zeichnen den überstumpfen Winkel $\alpha=260^\circ$:

    1. Zunächst zeichnet man einen waagerechten Schenkel und markiert den Scheitelpunkt.
    2. Der Schenkel wird über den Scheitelpunkt hinaus verlängert durch eine leicht gezeichnete, gestrichelte Linie.
    3. Der überstumpfe Winkel $\alpha=260^\circ$ setzt sich aus dem gestreckten Winkel ($=180^\circ$) und einem spitzen Winkel zusammen. Für diesen bildet man einfach die Differenz: $260^\circ-180^\circ=80^\circ$.
    4. Das Geodreieck wird unterhalb des Schenkels mit der Nullmarkierung im Scheitelpunkt angelegt und der spitze Winkel abgetragen. Dort wird eine Markierung angebracht.
    5. Die Verbindung des Scheitelpunktes mit dieser Markierung ist der zweite Schenkel.
    • $\alpha=280^\circ$
    Auch dieser überstumpfe Winkel wurde korrekt gezeichnet.

    Falsch gezeichnet wurden die folgenden Winkel:

    • $\alpha=190^\circ$
    Der gezeichnete Winkel setzt sich aus einem gestreckten Winkel ($180^\circ$) und einem rechten Winkel ($90^\circ$) zusammen und hätte somit eine Größe von $270^\circ$. Korrekt wäre ein gestreckter Winkel ($180^\circ$) und ein spitzer Winkel der Größe $10^\circ$.

    • $\alpha=360^\circ$
    Der gezeichnete Winkel setzt sich aus einem gestreckten Winkel ($180^\circ$) und einem stumpfen Winkel ($160^\circ$) zusammen und hätte somit eine Größe von $340^\circ$. Korrekt wäre ein Vollwinkel, da dieser eine Größe von $360^\circ$ hat.

    • $\alpha=110^\circ$
    Wir zeichnen den stumpfen Winkel $\alpha=110^\circ$:

    1. Zunächst zeichnet man einen waagerechten Schenkel und markiert den Scheitelpunkt.
    2. Das Geodreieck wird an den Schenkel mit der Nullmarkierung im Scheitelpunkt angelegt und der stumpfe Winkel mit $\alpha=110^\circ$ abgetragen. Dort wird eine Markierung angebracht.
    3. Die Verbindung des Scheitelpunktes mit dieser Markierung ist der zweite Schenkel.
  • Vergleiche die Winkel.

    Tipps

    Ein Vollwinkel hat eine Größe von $360^\circ$ und ist damit der größte. Er sieht aus wie ein (vollständiger) Kreis.

    Lösung

    Während wir die Winkel der Größe nach ordnen, gehen wir gleich noch einmal auf die Bezeichnungen ein, die dir helfen, Winkel zu unterscheiden:

    1. Der kleinste Winkel hat eine Größe von $45^\circ$. Damit handelt es sich um einen spitzen Winkel. So nennen wir alle Winkel, für die $0^\circ<\alpha<90^\circ$ gilt.
    2. Danach folgt der rechte Winkel. Dieser wird häufig mit einem Punkt im Winkelbogen markiert. Seine Größe beträgt immer $90^\circ$.
    3. Der nächstgrößere Winkel hat eine Größe von $160^\circ$. Damit handelt es sich hierbei um einen stumpfen Winkel. So nennen wir alle Winkel, für die $90^\circ<\alpha<180^\circ$ gilt.
    4. Danach folgt der gestreckte Winkel, dessen Schenkel immer eine Gerade bilden. Seine Größe beträgt immer $180^\circ$.
    5. Der nächstgrößere Winkel hat eine Größe von $210^\circ$. Damit handelt es sich hierbei um einen überstumpfen Winkel. So nennen wir alle Winkel, für die $180^\circ<\alpha<360^\circ$ gilt.
    6. Ein ganzer Kreis wird auch als Vollwinkel bezeichnet. Seine Größe beträgt immer $360^\circ$.
  • Ermittle die fehlenden Winkel.

    Tipps

    Zeichne den Winkel $\alpha$ in dem Scheitelpunkt $A$. Dabei muss der Winkel gegen den Uhrzeigersinn abgelesen werden.

    Wenn die beiden Winkel gezeichnet sind, kannst du den fehlenden Winkel messen.

    Wenn du die drei Winkel addierst, erhältst du $180^\circ$.

    Lösung

    Man zeichnet zunächst die Strecke zwischen den beiden Punkten $A$ und $B$ mit der Länge $4 \text{ cm}$.

    • Das Geodreieck wird in $A$ angelegt und gegen den Uhrzeigersinn wird der Winkel $\alpha$ abgetragen. So erhält man den zweiten Schenkel, der von $A$ ausgeht. Auf diesem liegt $C$ mit einem Abstand von $2\text{ cm}$ zu $A$.
    • Das Geodreieck wird in $B$ angelegt und im Uhrzeigersinn wird der Winkel $\beta$ abgetragen. So erhält man den zweiten Schenkel, der von $B$ ausgeht und auf dem $C$ liegt.
    • Dort, wo die beiden Schenkel sich schneiden, befindet sich der Punkt $C$.
    • Nun kann das Geodreieck in $C$ zum Beispiel an der Strecke von $\overline{AC}$ angelegt werden. Der Winkel wird gegen den Uhrzeigersinn abgelesen. Wenn man sehr genau gezeichnet hat, erhält man den Winkel $\gamma=90^\circ$. Aber Ergebnisse $85^\circ < \gamma < 95^\circ$ sind ebenfalls in Ordnung, wenn auch nicht ganz präzise.
    Diesen Winkel kann man gleichfalls berechnen, da sich die drei Innenwinkel eines Dreiecks immer zu $180^\circ$ addieren: $60^\circ+30^\circ+\gamma=180^\circ$.

    Nun kann auf beiden Seiten $90^\circ$ subtrahiert werden: Man erhält $\gamma=180^\circ-90^\circ=90^\circ$.

    Für das gleichseitige Dreieck kannst du ebenso vorgehen oder überlegst dir, dass alle drei Winkel gleich groß sein müssen und somit $60^\circ$ betragen.