Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kommutativgesetz und Assoziativgesetz – geschickt rechnen

Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Bewertung

Ø 4.0 / 247 Bewertungen
Die Autor*innen
Avatar
Team Digital
Kommutativgesetz und Assoziativgesetz – geschickt rechnen
lernst du in der 5. Klasse - 6. Klasse

Kommutativgesetz und Assoziativgesetz – geschickt rechnen Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kommutativgesetz und Assoziativgesetz – geschickt rechnen kannst du es wiederholen und üben.
  • Gib das Kommutativgesetz und das Assoziativgesetz an.

    Tipps

    Beispiel zum Kommutativgesetz:

    $79 + 14 + 11 = 79 + 11 + 14 = 90 + 14 = 104$

    Das Kommutativ- und das Assoziativgesetz gelten für die gleichen Rechenoperationen.

    Lösung

    Bei dem Kommutativgesetz bzw. Vertauschungsgesetz der Addition können wir die Summanden beliebig vertauschen:

    $24 + 15 + 6 = 24 + 6 + 15 = 30 + 15 = 45$

    Bei dem Kommutativgesetz der Multiplikation können wir die Faktoren beliebig vertauschen:

    $5 \cdot 13 \cdot 2 = 5 \cdot 2 \cdot 13 = 10 \cdot 13 = 130$

    Bei dem Assoziativgesetz bzw. Verbindungsgesetz können wir sowohl bei der Addition als auch bei der Multiplikation beliebig Klammern setzen:

    $18 + 11+ 49 + 7 = 18 + (11+49)+7 = 18 + 60 + 7 = 85$

    $13 \cdot 4 \cdot 25 = 13 \cdot (4 \cdot 25) = 13 \cdot 100 = 1\,300$

  • Bestimme alle falschen Rechnungen.

    Tipps

    Gehe die Rechnungen jeweils Schritt für Schritt durch und schaue, ob du Fehler findest.

    Achte bei der Multiplikation darauf, die Zahlen so zusammenzufassen, dass ganze Zehner oder Hunderter entstehen.

    Beispiel:

    $14 + 73 + 56 =14 + 56 + 73 = 70 + 73 = 143$

    Hier haben wir das Kommutativgesetz angewendet, um die Zahlen $14$ und $56$ zuerst zusammenfassen zu können.

    Lösung

    Richtige Rechnungen:

    • $73 + 58 + 27 = 73 + 27 + 58 = 100 + 58$
    Hier wurde das Kommutativgesetz der Addition angewendet.
    • $10 + 44 + 56 + 8 = 10 + (44+56) +8 = 10 + 100 + 8 = 118$
    Hier wurde das Assoziativgesetz der Addition angewendet.
    • $2 \cdot 7 \cdot 5 = 2 \cdot 5 \cdot 7 = 10 \cdot 7 = 70$
    Hier wurde das Kommutativgesetz der Multiplikation angewendet.

    Falsche Rechnungen:

    • $22+73+28 = 73 + (28 + 22) = 73 + 6 = 79$
    Hier wurde in der Klammer subtrahiert statt addiert. Korrekt lautet die Rechnung:
    $22+73+28 = 73 + (28 + 22) = 73 + 50 = 123$
    • $6 \cdot 25 \cdot 4 = 100 \cdot 4 = 400$
    Hier wurde falsch multipliziert. Korrekt lautet die Rechnung:
    $6 \cdot 25 \cdot 4 = 6 \cdot 100 = 600$
    • $3 \cdot 5 \cdot 3 \cdot 20 = 15 \cdot 23 = 345$
    Hier wurden die Zahlen $3$ und $20$ addiert statt multipliziert. Korrekt lautet die Rechnung:
    $3 \cdot 5 \cdot 3 \cdot 20 = (3 \cdot 3) \cdot (5 \cdot 20) = 9 \cdot 100 = 900$

  • Entscheide, welche Zahlen du als Erstes zusammenfassen würdest, um vorteilhaft zu rechnen.

    Tipps

    Versuche, bei der Addition Zahlen zu finden, die zusammen volle Zehner, Hunderter etc. ergeben.

    Versuche, bei der Multiplikation Zahlen zu finden, deren Produkt $10$, $100$, $1\,000$ etc. ergibt.

    Lösung

    Wir rechnen vorteilhaft, indem wir zunächst Zahlen zusammenfassen, die ein schönes Ergebnis haben. Damit lässt sich dann der Rest der Aufgabe leichter lösen.

    Beispiel 1:
    $13 + 76 + 44 = 13 + \mathbf{(76 + 44)} = 13 + 120 = 133$
    Wir haben das Assoziativgesetz verwendet.

    Beispiel 2:
    $ 45 \cdot 4 \cdot 25 = 45 \cdot \mathbf{(4 \cdot 25)} = 45 \cdot 100 = 4\,500$
    Wir haben das Assoziativgesetz verwendet.

    Beispiel 3:
    $125 \cdot 4 \cdot 8 \cdot 3 = 125 \cdot \mathbf{8 \cdot 4} \cdot 3 = \mathbf{(125 \cdot 8 )} \cdot (4 \cdot 3) = 1\,000 \cdot 12 = 12\,000$
    Wir haben zunächst das Kommutativgesetzt und dann das Assoziativgesetz angewendet.

    Beispiel 4:
    $19+43+7+28=19+\mathbf{(43+7)}+28=19+50+28=69+28=97$
    Wir haben das Assoziativgesetz verwendet.

  • Wende das Kommutativ- und das Assoziativgesetz zur Berechnung an.

    Tipps

    Du kannst bei der Addition die Summanden vertauschen.

    Lösung

    Wir können das Kommutativ- und das Assoziativgesetz anwenden, um geschickt zu rechnen:

    Beispiel 1:
    $131 + 42 + 19$
    Hier ist es clever, das Kommutativgesetz anzuwenden und die Summanden zu vertauschen, um die beiden Zahlen $131$ und $19$ zu addieren:
    $131 + 42 + 19 = 131 + 19 + 42 = 150 + 42 = 192$

    Beispiel 2:
    $16 + 58 + 12 + 11$
    Hier ist es smart, das Assoziativgesetz anzuwenden und erst die Summanden $58$ und $12$ zu addieren:
    $16 + 58 + 12 + 11 = 16 + (58 + 12) + 11 = 16 + 70 + 11 = 97$

    Beispiel 3:
    $4 \cdot 9 \cdot 25$
    Hier ist es klug, das Kommutativgesetz anzuwenden und die Faktoren zu vertauschen, um zuerst die beiden Zahlen $4$ und $25$ zu multiplizieren:
    $4 \cdot 9 \cdot 25 = 4 \cdot 25 \cdot 9 = 100 \cdot 9 = 900$

    Beispiel 4:
    $6 \cdot 8 \cdot 125 \cdot 14$
    Hier ist es sinnvoll, das Assoziativgesetz anzuwenden und erst die Faktoren $8$ und $125$ zu multiplizieren:
    $6 \cdot 8 \cdot 125 \cdot 14 = 6 \cdot (8 \cdot 125) \cdot 14 = 6 \cdot 1\,000 \cdot 14 = 6 \cdot 14 \cdot 1\,000 = 84 \cdot 1\,000 = 84\,000$

  • Gib jeweils an, welches Gesetz angewendet wurde.

    Tipps

    Das Kommutativgesetz heißt auch Vertauschungsgesetz.

    $13 + 4 + 56 + 18 = 13 + (4 + 56) + 18 = 13 + 60 + 18$

    Hier wurde das Assoziativgesetz angewendet.

    Lösung

    Beispiel 1:
    $73 + 58 + 27 = 73 + 27 + 58 = 100 + 58$
    Da hier Summanden vertauscht wurden, um einfacher rechnen zu können, wurde das Vertauschungsgesetz (= Kommutativgesetz) angewendet.

    Beispiel 2:
    $22 + 73 + 28 = 73 + (28 + 22) = 73 + 50 = 123$
    Weil hier durch das Setzen einer Klammer zwei Summanden verbunden wurden, wurde das Verbindungsgesetz (= Assoziativgesetz) genutzt.

    Beispiel 3:
    $2 \cdot 7 \cdot 5 = 2 \cdot 5 \cdot 7 = 10 \cdot 7 = 70$
    Da hier zwei Faktoren vertauscht wurden, wurde das Kommutativgesetz angewendet.

    Beispiel 4:
    $10 + 44 + 56 + 8 = 10 + (44+56) +8 = 10 + 100 + 8 = 118$
    Weil hier eine Klammer gesetzt wurde, wurde das Assoziativgesetz genutzt.

  • Berechne möglichst geschickt.

    Tipps

    Du kannst bei der Addition und bei der Multiplikation beliebig Klammern setzen.

    Beispiel:

    $14 + 57 + 86 = (14 + 86) + 57 = 100 + 57 = 157$

    Lösung

    Wir fassen geschickt zusammen:

    Beispiel 1:
    Wir wenden das Kommutativgesetz an:
    $83 + 45 + 27 = 83 + 27 + 45 = 110 + 45 = 155$

    Beispiel 2:
    Wir nutzen das Kommutativgesetz und anschließend das Assoziativgesetz:
    $4 \cdot 20 \cdot 9 \cdot 5= (4 \cdot 9) \cdot (5 \cdot 20) = 36 \cdot 100 = 3\,600$

    Beispiel 3:
    Wir wenden das Kommutativgesetz und danach das Assoziativgesetz an:
    $19 + 11 + 67 + 38 + 13= (19 + 11) + (67 + 13) + 38 = 30 + 80 + 38 = 148$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.156

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.930

Lernvideos

37.078

Übungen

34.333

Arbeitsblätter

24h

Hilfe von Lehrer*
innen

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden