3 Profile für Kinder Bis zu 3 Geschwisterprofile in einem Account anlegen
NEU - Badge
Über 1,6 Millionen Schüler*innen nutzen sofatutor!
  • 93%

    haben mit sofatutor ihre Noten in mindestens einem Fach verbessert

  • 94%

    verstehen den Schulstoff mit sofatutor besser

  • 92%

    können sich mit sofatutor besser auf Schularbeiten vorbereiten

Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Lerne mathematische Rechengesetze anhand von Beispielen! Entdecke, wie du mit Klammern im Kommutativ-, Assoziativ- und Distributivgesetz umgehst und verbessere dein Geschick im Rechnen. Neugierig geworden? Finde mehr in dem folgenden Text heraus!

Video abspielen
Du willst ganz einfach ein neues Thema lernen
in nur 12 Minuten?
Du willst ganz einfach ein neues
Thema lernen in nur 12 Minuten?
  • Das Mädchen lernt 5 Minuten mit dem Computer 5 Minuten verstehen

    Unsere Videos erklären Ihrem Kind Themen anschaulich und verständlich.

    92%
    der Schüler*innen hilft sofatutor beim selbstständigen Lernen.
  • Das Mädchen übt 5 Minuten auf dem Tablet 5 Minuten üben

    Mit Übungen und Lernspielen festigt Ihr Kind das neue Wissen spielerisch.

    93%
    der Schüler*innen haben ihre Noten in mindestens einem Fach verbessert.
  • Das Mädchen stellt fragen und nutzt dafür ein Tablet 2 Minuten Fragen stellen

    Hat Ihr Kind Fragen, kann es diese im Chat oder in der Fragenbox stellen.

    94%
    der Schüler*innen hilft sofatutor beim Verstehen von Unterrichtsinhalten.
Teste dein Wissen zum Thema Kommutativgesetz, Assoziativgesetz, Distributivgesetz

Welches Rechengesetz erlaubt es, Summanden bei der Addition und Faktoren bei der Multiplikation beliebig zu vertauschen?

1/5
Bewertung

Ø 4.3 / 1160 Bewertungen
Die Autor*innen
Avatar
Team Digital
Kommutativgesetz, Assoziativgesetz, Distributivgesetz
lernst du in der 5. Klasse - 6. Klasse

Kommutativgesetz, Assoziativgesetz, Distributivgesetz Übung

Du möchtest dein gelerntes Wissen anwenden? Mit den Aufgaben zum Video Kommutativgesetz, Assoziativgesetz, Distributivgesetz kannst du es wiederholen und üben.
  • Gib an, für welche Grundrechenarten das Kommutativgesetz und das Assoziativgesetz gelten.

    Tipps

    Das Kommutativgesetz heißt auch Vertauschungsgesetz.

    Das Assoziativgesetz heißt auch Verbindungs- oder Klammerngesetz.

    Überprüfe, bei welchen Rechnungen sich das Ergebnis nicht ändert, wenn du die Elemente vertauschst.

    Die Reihenfolge der Zahlen bei einer Addition ist nicht relevant.

    Es gilt zum Beispiel:

    $\begin{array}{ll} 6+3&=3+6 \\ 9&=9 \end{array}$

    Lösung

    Das Kommutativgesetz wird auch Vertauschungsgesetz genannt. Für die Addition besagt es, dass man Summanden vertauschen darf, ohne dass sich das Ergebnis ändert.
    Das heißt, dass wir zum Beispiel $6 + 3$ auch als $3 + 6$ schreiben können und trotzdem dasselbe Ergebnis erhalten:
    $6 + 3 = 3 + 6 \quad$ Beide Seiten ergeben $9$.

    Das Kommutativgesetz gilt auch für die Multiplikation. Wie bei der Addition die Summanden, kannst du bei der Multiplikation die Faktoren vertauschen:
    $6 \cdot 3 = 3 \cdot 6 \quad$ Auf beiden Seiten erhalten wir das Ergebnis $18$.

    Für die Subtraktion gilt das Kommutativgesetz nicht, denn:
    $6 - 3 = 3~$ aber $~3 - 6 = -3$
    Auch auf die Division kann das Vertauschungsgesetz nicht angewendet werden: $6 : 3 = 2~$ aber $~3 : 6 = \dfrac{3}{6} = \dfrac{1}{2}$


    Für die Addition besagt das Assoziativgesetz oder Verbindungsgesetz, dass man beim mehrfachen Addieren Klammern beliebig setzen, umsetzen oder auch weglassen kann. So ist zum Beispiel:
    $(6 + 3) +2 = 6 + (3 + 2) = 6 + 3 + 2$
    Berechnen wir die erste Summe und rechnen zuerst die Klammer, so erhalten wir $9 + 2$, das ergibt $11$. Dasselbe Ergebnis erhalten wir, wenn wir zunächst $3 + 2$ rechnen und dann $6$ addieren.

    Das Assoziativgesetz gilt ebenso für die Multiplikation. Auch bei der Multiplikation können wir Klammern beliebig setzen und weglassen:
    $(6 \cdot 3) \cdot 2 = 6 \cdot (3 \cdot 2) = 6 \cdot 3 \cdot 2$
    Rechnen wir alle drei Terme aus, so erhalten wir immer $36$.

    Für die Subtraktion gilt das Assoziativgesetz nicht. So ist:
    $(6 - 3) - 2 = 3 - 2 = 1~$ aber $~6 - (3 - 2) = 6 - 1 = 5$
    Die beiden Ergebnisse stimmen nicht überein.
    Auch für die Division gilt das Assoziativgesetz nicht:
    $(6 : 3) : 2 = 2 : 2 = 1~$ aber $~6 : (3 : 2) = 6 : \dfrac{3}{2} = 4$
    Diese beiden Ergebnisse stimmen ebenfalls nicht überein.

  • Beschreibe die Verwendung des Kommutativ-, Assoziativ- und Distributivgesetzes.

    Tipps

    Das Kommutativgesetz gilt nicht für Subtraktion und Division.

    Da:

    $6-3=3$

    aber:

    $3-6=-3$

    So funktioniert das Distributivgesetz, wenn eine Summe in der Klammer steht:

    $(8+3)\cdot 2 = 8\cdot 2 + 3\cdot 2 =16+6=22$

    Das Assoziativgesetz kann nicht bei der Division angewandt werden, da zum Beispiel:

    $(36:6):3=6:3=2$

    aber:

    $36:(6:3)=36:2=18$

    Lösung

    So kannst du den Lückentext vervollständigen:

    „Das Kommutativgesetz gilt für die Addition und Multiplikation. Es besagt, dass du die Reihenfolge der Summanden oder Faktoren vertauschen darfst. Also ist:

    $6+3=3+6$ und

    $6 \cdot 3=3 \cdot 6$“

    • Achtung: Das gilt nicht für die Subtraktion und Division!
    „Das Assoziativgesetz gilt für die Addition und Multiplikation. Wenn diese Rechenarten alleine vorkommen, darfst du Klammern beliebig setzen, oder weglassen. Also:

    $(6+3)+2=6+(3+2)=6+3+2$ und:

    $(6 \cdot 3) \cdot 2=6 \cdot( 3 \cdot 2)=6 \cdot 3 \cdot 2$“

    • Beachte, dass dies nicht für Mischformen gilt. Kommen also zum Beispiel Multiplikation und Addition in einem Ausdruck gemeinsam vor, kannst du hier die Klammern nicht beliebig setzen.
    „Das Distributivgesetz kannst du anwenden, wenn ein Faktor mit einem Ausdruck in einer Klammer multipliziert wird. In diesem Fall darfst du den Faktor auch zuerst einzeln mit den Zahlen in der Klammer multiplizieren. So erhältst du zum Beispiel:

    $(8-2)\cdot 2 = 8\cdot 2-2\cdot 2=16-4=12$“

    • Diesen Vorgang nennt man auch ausmultiplizieren.
  • Wende die Gesetze an.

    Tipps

    Die gelernten Gesetze können dir helfen zu erkennen, welche mathematischen Ausdrücke gleich sind. Mit dem Assoziativgesetz weißt du zum Beispiel, dass:

    • $1+(3+4)=(1+3)+4=8$
    Lösung

    Du kannst die Rechnungen zuordnen, indem du gelernten Gesetze anwendest.

    Hier kannst du das Assoziativgesetz anwenden (Klammern beliebig setzen):

    • $2+(4+2)=(2+4)+2=8$
    • $(2\cdot 2) \cdot 3=2\cdot (2 \cdot 3)=12$
    Hier kannst du das Distributivgesetz anwenden (Faktoren vor der Klammer mit allen Ausdrücken in der Klammer multiplizieren):

    • $2 \cdot (7-3)=2 \cdot 7- 3 \cdot 2=8$
    • $2 \cdot (9-2)=2 \cdot 9-2 \cdot 2=14$
    Hier kannst du das Kommutativgesetz anwenden (Vertauschen von Faktoren oder Summanden):

    • $8+1+3=1+8+3=12$
    • $7 \cdot 2=2\cdot 7=14$
  • Ermittle die Ergebnisse der Rechnungen.

    Tipps

    Verändere die Reihenfolge von Summanden, um deine Rechnung zu erleichtern.

    Lösung

    Du kannst die Rechnungen lösen, indem du sie mit den gelernten Gesetzen vereinfachst und anschließend berechnest.

    In fast allen Rechnungen werden Klammern weggelassen (Assoziativgesetz), die Reihenfolge von Summanden vertauscht (Kommutativgesetz) und Faktoren vor einer Klammer einzeln mit den Ausdrücken in der Klammer multipliziert (Distributivgesetz). Rechts siehst du, welches Gesetz angewendet wurde. So erhältst du:

    $\begin{array}{llr} 1 \cdot 2 + (3+6)-3+ 2 \cdot (6-3)&= 2+3+6-3+2 \cdot (6-3) &\| ~ \text{Assoziativgesetz} \\ &= 2+3+6-3+12-6 &\| ~ \text{Distributivgesetz}\\ &= 2+12+3-3+6-6 &\| ~ \text{Kommutativgesetz}\\ &=14 & \end{array}$

    $\begin{array}{llr} 3 \cdot (2-3) + (3+9)+ 1 \cdot 2 \cdot 3&= 6-9+(3+9)+6&\| ~ \text{Distributivgesetz}\\ &= 6-9+3+9+6&\| ~ \text{Assoziativgesetz}\\ &= 6+6+9-9+3&\| ~ \text{Kommutativgesetz}\\ &=15 \end{array}$

    $\begin{array}{llr} (6 \cdot 5) \cdot 3+1+9 -3 \cdot (3+5) &= 6 \cdot 5 \cdot 3+1+9-3 \cdot (3+5)&\| ~ \text{Assoziativgesetz}\\ &= 6 \cdot 5 \cdot 3+1+9-9-15&\| ~ \text{Distributivgesetz}\\ &= 90-15+1&\| ~ \text{Kommutativgesetz}\\ &=76 \end{array}$

    $\begin{array}{llr} (1+2)+7+7 \cdot (3-1)&=1+2+7+7 \cdot (3-1) &\| ~ \text{Assoziativgesetz}\\ &=1+2+7+21-7 &\| ~ \text{Distributivgesetz}\\ &=1+21+2+7-7&\| ~ \text{Kommutativgesetz} \\ &=24 \end{array}$

  • Gib an, welches Gesetz angewandt werden kann.

    Tipps

    Das Kommutativgesetz gilt für die Addition und Multiplikation. Kommen diese Rechenarten alleine vor, kannst du die Reihenfolge der Summanden oder Faktoren vertauschen.

    $\begin{array}{ccc} 1+2+3 &=& 1+3+2 \\ 6 &=& 6 \\ \\ \end{array}$

    $\begin{array}{ccc} 2+1+3 &=& 2+3+1 \\ 6 &=& 6 \\ \\ \end{array}$

    $\begin{array}{ccc} 3+1+2 &=& 3+2+1\\ 6 &=& 6 \end{array}$

    Das Assoziativgesetz gilt ebenfalls für die Addition und Multiplikation. Wenn diese Rechenarten allein vorkommen, darfst du Klammern beliebig setzen oder weglassen.

    $\begin{array}{ccccc} 1 \cdot (2 \cdot 3) &=& (1 \cdot 2) \cdot 3 &=& 1 \cdot 2 \cdot 3 \\ 1 \cdot 6 &=& 2 \cdot 3 &=& 2 \cdot 3 \\ 6 &=& 6 &=& 6 \end{array}$

    Lösung

    Das Kommutativgesetz gilt für die Addition und Multiplikation. Kommen diese Rechenarten alleine vor, kannst du die Reihenfolge der Summanden oder Faktoren vertauschen. Dieses Gesetz wurde hier angewandt:

    • $63 \cdot 7 =7 \cdot 63$
    • $6 \cdot 3 \cdot 2 =2 \cdot 3 \cdot 6$
    Das Assoziativgesetz gilt ebenfalls für die Addition und Multiplikation. Wenn diese Rechenarten alleine vorkommen, darfst du Klammern beliebig setzen oder weglassen. Hier wurde das Gesetz angewandt:

    • $73+(12+7)=73+12+7$
    • $6+(3+2)=(6+3)+2$
    Das Distributivgesetz kannst du anwenden, wenn ein Faktor mit einem Ausdruck in einer Klammer multipliziert wird. In diesem Fall darfst du den Faktor auch zuerst einzeln mit den Zahlen in der Klammer multiplizieren. Dieses Gesetz wurde hier angewandt:

    • $3 \cdot (5-2)=3 \cdot 5 + 3 \cdot (-2)$
    • $7 \cdot (60+3)=7 \cdot 60 + 7 \cdot 3$
  • Erschließe, wo die Gesetze richtig angewandt wurden.

    Tipps

    Mit den drei Gesetzen kannst du die Rechnungen vereinfachen und lösen. Allerdings ist es nicht immer sinnvoll die Gesetze anzuwenden. Überlege dir, welcher Rechenweg am effizientesten ist.

    Lösung

    Mit den drei Gesetzen kannst du die Rechnungen vereinfachen und lösen. Allerdings ist es nicht immer sinnvoll, die Gesetze anzuwenden. Überlege dir, welcher Rechenweg am effizientesten ist. Dann erhältst du, dass diese Rechnungen falsch sind:

    • $13-9+(15+5)+3 \cdot (3-5) = 16$
    So kannst du sie richtig lösen:

    $\begin{array}{llr} 13-9+(15+5)+3 \cdot (3-5) &=13-9+15+5+3 \cdot (3-5)&\| ~ \text{Assoziativgesetz} \\ &=13-9+15+5+9 -15 &\| ~ \text{Distributivgesetz} \\ &=13+5+15-15+9-9 &\| ~ \text{Kommutativgesetz} \\ &=18\\ \end{array}$

    • $(8 \cdot 2 ) \cdot 5 + 82 + 7 + 18 + 7 \cdot (10-1)=240$
    Diese Rechnung wird so richtig durchgeführt:

    $\begin{array}{llr} (8 \cdot 2 ) \cdot 5 + 82 + 7 + 18 + 7 \cdot (10-1) &=8 \cdot 2 \cdot 5+ 82 + 7 + 18 +7 \cdot (10-1)&\| ~ \text{Assoziativgesetz} \\ &=8 \cdot 2 \cdot 5+ 82 + 7 + 18 +70-7 &\| ~ \text{Distributivgesetz} \\ &=8 \cdot 10+ 82 +18 + 7-7 +70 &\| ~ \text{Kommutativgesetz} \\ &=80+100+70\\ &=250\\ \end{array}$

    Diese Rechnungen wurden korrekt gelöst:

    $\begin{array}{ll} 100-90+(3 \cdot 2) \cdot 5 + 10 \cdot (15-10)&= 100-90+3 \cdot 2 \cdot 5 + 150-100\\ &= 100-100+150-90+3 \cdot 10 \\ &=150- 90+30 \\ &=90 \end{array}$

    $\begin{array}{ll} 3 \cdot 3 \cdot 4 + 9 \cdot ( 4-2) + (18 + 1) +12&= 36 + 36-18 + 18 + 1 +12\\ &= 36 + 36+12+ 18-18 + 1 \\ &= 36 + 36+12 + 1 \\ &=85 \end{array}$

    $\begin{array}{ll} 5 \cdot 3 \cdot 2 - 3 \cdot 5 \cdot 2 + 100 -10 + 9 \cdot (12 -22)&=5 \cdot 2\cdot 3 - 5 \cdot 2 \cdot 3 + 100 -10 + 9 \cdot (-10)\\ &=100-10-90\\ &=0 \end{array}$

30 Tage kostenlos testen
Mit Spaß Noten verbessern
und vollen Zugriff erhalten auf

8.977

sofaheld-Level

6.601

vorgefertigte
Vokabeln

7.712

Lernvideos

37.352

Übungen

33.680

Arbeitsblätter

24h

Hilfe von Lehrkräften

laufender Yeti

Inhalte für alle Fächer und Klassenstufen.
Von Expert*innen erstellt und angepasst an die Lehrpläne der Bundesländer.

30 Tage kostenlos testen

Testphase jederzeit online beenden